рефераты скачать

МЕНЮ


Учебник по физике для поступающих в ВУЗ /Экзаменационные вопросы по физике (2006-2007)/


Учитывая закон Кулона статическое равновесие зарядов будет в случае:

k  = k

Равновесие заряда q3 не зависит ни от его величины, ни от знака заряда.

При изменении заряда q3 в равной мере меняются как силы притяжения (q3 положительный), так и силы отталкивания (q3 отрицательный)


Решив квадратное уравнение относительно x можно показать, что заряд любого знака и величины будет находится в равновесии в точке на расстоянии x1 от заряда q1:

x1 = l


Выясним устойчивым или неустойчивым будет положение третьего заряда.

(При устойчивом равновесии тело, выведенное из положения равновесия, возвращается к нему, при неустойчивом – удаляется от него)

При горизонтальном смещении силы отталкивания F31, F32 меняются из-за изменения расстояний между зарядами, возвращая заряд к положению равновесия.

При горизонтальном смещении равновесие заряда q3 устойчивое.


При вертикальном смещении, равнодействующая F31, F32 выталкивает q3

от положения равновесия вверх или вниз.

При вертикальном смещении равновесие заряда q3 неустойчивое.

Система статических зарядов не может быть устойчивой

По этой причине стабильное вещество может строиться лишь из движущихся зарядов.

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ

Электрическое поле существует реально. Его свойства можно исследовать опытным путем.

Поле материально; оно существует независимо от нас и от наших знаний о нем;

поле обладает определенными свойствами, которые не позволяют спутать его с чем-либо другим в окружающем мире.


Электрическое поле – особый вид материи, отличающийся от вещества.


Главное свойство электрического поля – действие его на электрические заряды с некоторой силой. По действию на заряд устанавливают существование поля, распределение его в пространстве, изучают его характеристики.


Сила, с которой электрическое поле действует на внесенный в него электрический заряд, называется электрической силой.


Электрическое поле неподвижных зарядов называют электростатическим. Оно не меняется со временем. Электростатическое поле создается только электрическими зарядами. Оно существует в пространстве, окружающем эти заряды, и неразрывно связано с ними (не может существовать поля без электрического заряда)

Доказательство реальности существования электрического поля – конечная скорость распространения электромагнитных взаимодействий.

НАПРЯЖЕННОСТЬ ЭЛЕКТРИЧЕСКОГО ПОЛЯ(уч.10кл.стр.363-368, 374)

Заряд – источник электромагнитного поля

Силовая характеристика электростатического поля. Пробный заряд

Определение и формула напряженности электростатического поля

Единицы измерения

Вектор напряженности

Сила действующая на заряд, помещенный в поле

Линии напряженности поля

Сгущение линий напряженности поля

Модуль напряженности

Однородное электростатическое поле.


Напряженность электрического поля точечного заряда

Напряженность электрического поля сферы (см.ниже уч.10кл.стр.374)

Напряженность электрического поля заряженной плоскости(см.ниже уч.10кл.стр.374)



Согласно идее Фарадея электрические заряды не действуют друг на друга непосредственно. Каждый их них создает в окружающем пространстве электрическое поле. Поле одного заряда действует на другой, и наоборот.

По мере удаления от заряда поле ослабевает.


Основываясь на идеях Фарадея Максвелл сумел теоретически доказать, что электромагнитные взаимодействия должны распространяться в пространстве с конечной скоростью


Заряд является источником электромагнитного взаимодействия, или источником электромагнитного поля, распространяющегося в пространстве со скоростью света.


Рассмотрим действие электростатического поля точечного положительного заряда Q на пробный заряд q, помещенный в поле.

Пробный заряд должен быть настолько мал, чтобы не искажать исследуемое поле. Пробный заряд выбирают положительным по знаку.


По закону Кулона сил отталкивания, действующая на пробный заряд, зависит не только от заряда Q, но и от пробного заряда. Это неудобно для характеристики поля.

Fqo= k

Отношение силы, действующей на пробный заряд q0, к его величине не зависит от модуля заряда.


Напряженность электростатического поля – векторная физическая величина, равная отношению силы Кулона, с которой поле действует на пробный положительный заряд, помещенный в данную точку поля, к этому заряду:

Единица измерения – Н/Кл


Напряженность поля – силовая характеристика электростатического поля


Напряженность поля точечного положительного заряда обратно пропорциональна квадрату расстояние от него:

Fqo= k  ;  Þ E = k

Напряженность электростатического поля в данной точке пространства численно равна силе Кулона, с которой поле действует на пробный единичный положительный заряд, помещенный в этой точке.


Направление вектора напряженности совпадает с направлением силы Кулона, действующей на единичный положительный заряд, помещенный в данную точку поля.



Принцип суперпозиции полей :

Если в данной точке пространства различные заряженные частицы создают электрические поля, то результирующая напряженность поля в этой точке равна векторной сумме напряженностей полей, создаваемых каждой из частиц.


Для большей наглядности электростатическое поле представляют непрерывными линиями напряженности. (В реальности таких линий не существует. Они введены лишь для наглядности представления напряженности поля в пространстве)


Линии напряженности поля – линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности электростатического поля в данной точке.


Линии напряженности электростатического поля, созданного точечным положительным зарядом, направлены радиально от заряда, так как пробный положительный заряд в любой точке отталкивается от него.

Линии напряженности электростатического поля, созданного точечным отрицательным зарядом, направлены радиально к заряду, так как пробный положительный заряд в любой точке притягивается к нему.

Положительный заряд является источником линий напряженности.

Отрицательный заряд является стоком линий напряженности.


Линии напряженности поля не пересекаются.

В противном случае напряженность электростатического поля не имела бы определенного направления в точке пересечения.

Силовые линии электрического поля замкнуты, они начинаются на положительных зарядах и оканчиваются на отрицательных ( в том числе и расположенных «на бесконечности»)


Линии напряженности строят с определенной густотой соответствующей модулю напряженности поля. Через площадку 1 м2 проводят количество линий равное модулю Е.


Число линий, пронизывающих единицу площади, характеризует модуль напряженности поля.


Пусть для точечного положительного заряда +Q сквозь единицу поверхности сферы радиуса r вокруг заряда проходит N линий напряженности. Степень сгущения составляет:

~

Напряженность Е так же пропорциональна , значит E ~


Модуль напряженности поля пропорционален степени сгущения линий напряженности электростатического поля.

В области сгущения линий напряженности больше, в области разряжения – меньше.

Если расстояние между линиями напряженности одинаково (линии параллельны), то одинакова и напряженность поля.


Электрическое поле, векторы напряженности которого одинаковы во всех точках пространства, называется однородным.

В ограниченной области пространства электрическое поле можно считать приблизительно однородным, если напряженность поля внутри области меняется незначительно.


см. ниже «Диэлектрическая проницаемость» (уч.10кл.390-391)

Относительная диэлектрическая проницаемость среды – число, показывающее во сколько раз напряженность электростатического поля в однородном диэлектрике меньше, чем напряженности в вакууме:

e =

Обозначение - e


Следовательно, напряженность поля в диэлектрике:

E =

Напряженность электрического поля зависит от относительной диэлектрической проницаемости среды e поэтому при наличии нескольких граничащих диэлектриков на границе разрыва двух сред напряженность поля меняется скачком (линии вектора Е терпят разрыв).


Электрическое смещение

Электрическое смещение D в данной точке среды – векторная величина, численно равная произведению относительной диэлектрической проницаемости среды, электрической постоянной на напряженность поля в данной точке.

­­  = ee0

Единица измерения D - Кл/м2


Вектор D не зависит от e:

Для точечного заряда или заряженной сферы:

E =  Þ D = ee0=

Для заряженной плоскости:

E = Þ D = ee0 =


Вектор электрического смещения D не зависит от относительной диэлектрической проницаемости среды e, т.е. является одинаковым по величине во всех средах, поэтому не имеет скачка и разрыва на границе сред. (в отличие от напряженности Е)

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ ТОЧЕЧНОГО ЗАРЯДА(уч.10кл.стр.363-365, 366-368)

Напряженность электростатического поля (см.выше уч.10кл.стр.363-365)

Линии напряженности электростатического поля (см.выше)

Линии напряженности поля единичного заряда (положительного и отрицательного)

Сгущение линий напряженности поля (см.выше)

Понятие однородного электрического поля (см.выше)


Напряженность электрического поля сферы (см.ниже уч.10кл.стр.374)

ПОТЕНЦИАЛЬНОСТЬ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ(уч.10кл.стр.378-381)

Аналогия движение частицы в гравитационном и электростатическом полях

Работа сил электростатического поля при перемещении частицы в нем

Потенциальность электростатического поля.

Обозначение потенциальной энергии электростатического поля

Потенциальная энергия взаимодействия точечных зарядов. Формула(уч.10кл.стр.380)

Знаки в выражении для энергии взаимодействия поля и их физический смысл



Работа в гравитационном поле Ag = mgh

Работа в электростатическом поле Aq = Fkh = qEh

Движение частицы в гравитационном поле аналогично ее движения в электростатическом. В первом случае фигурирует сила mg, во втором – кулоновская сила qE

Силы гравитационного и электростатического полей зависят от 1/r2 и направлены по прямой соединяющей тела.

Fg = G

F-q =


При перемещении заряда действующая на него со стороны поля сила совершает работу.

Поэтому можно утверждать, что заряженное тело в электрическом поле обладает энергией.

Найдем потенциальную энергию по перемещению заряда в однородном электрическом поле. Однородное поле создают, например, большие металлические пластины, имеющие заряды противоположного знака.

Такое поле действует на заряд с постоянной силой:

Вычислим работу поля при перемещении положительного заряда q из точки 1, находящейся на расстоянии d1 от пластины, в точку 2, расположенную на расстоянии d2< d1 от той же пластины. Точки 1 и 2 лежат на одной силовой линии.

На участке Dd = d1 – d2 электрическое поле совершит положительную работу:

A = qE (d1 – d2) = - (qEd1 – qEd2)


Эта работа не зависит от формы траектории.

Если работа не зависит от формы траектории, то она равна изменению потенциальной энергии, взятому с противоположным знаком:

A = - (Wp1 – Wp2) = - DWp


Сравнивая полученные выражения, видим, что потенциальная энергия заряда в однородном электростатическом поле:

Wp = qEd


На замкнутой траектории, когда заряд возвращается в начальную точку, работа поля равна нулю:

A = - DWp = - (Wp1 – Wp1) = 0


Работа сил электростатического поля при перемещении заряженной частицы из одной точки поля в другую не зависит от формы траектории, а зависит лишь от начального и конечного положения частицы.


Электростатическое поле потенциально

Силы электростатического поля консервативны - их работа не зависит от траектории движения.


Работа сил электростатического поля равна разности потенциальных энергий заряженной частицы в начальном и конечном положениях:

A = Wp1 – Wp2

 

Физический смысл имеет не сама потенциальная энергия, а разность ее значений, определяемая работой поля при перемещении заряда из начального положения в конечное:

Wp = qEd1 – qEd2


Точка отсчета потенциальной энергии электростатического поля выбирается произвольно.(Обычно на бесконечности)

Обычно нуль отсчета потенциальной энергии выбирается на бесконечно большом расстоянии, где заряды практически не взаимодействуют друг с другом.


Если поле совершает положительную работу, то потенциальная энергия заряженного тела в поле уменьшается: DWp < 0. Одновременно, согласно закону сохранения энергии, растет его кинетическая энергия. (Это используется в ускорителях заряженных частиц)


И наоборот, если работа отрицательна (например при движении положительно заряженной частицы против напряженности поля), то DWp > 0. Потенциальная энергия растет, а кинетическая уменьшается. Частица тормозится.


По аналогии с гравитационным полем потенциальная энергия заряда (отрицательного заряда –q в поле положительного заряда +Q) составляет:

Ep = W = - G  Þ W-q = -


Потенциальная энергия положительного заряда +q, находящегося на расстоянии r от неподвижного заряда +Q, равна

W+q =

Знак минус в выражении для потенциальной энергии означает, что между зарядами действует сила притяжения.

Знак плюс – сила отталкивания.

Заряженные частицы в электростатическом поле обладают потенциальной энергией. При перемещении частицы из одной точки поля в другую электрическое поле совершает работу, не зависящую от формы траектории. Эта работа равна изменению потенциальной энергии, взятой со знаком «минус»

РАЗНОСТЬ ПОТЕНЦИАЛОВ(уч.10кл.стр.381-385)

Потенциал как энергетическая характеристика поля (энергия единичного положительного заряда в поле другого заряда)

Определение потенциала. Обозначение. Формула.

Единицы измерения. Определение Вольта

Формула потенциала поля единичного заряда

Понятие эквипотенциальной поверхности

Эквипотенциальные поверхности единичного заряда и сферы

Эквипотенциальные поверхности плоскостей (конденсатор)

Линии напряженности поля у эквипотенциальных поверхностей

Физический смысл и формула разности потенциалов, как работы поля

Определение потенциала через работу сил поля

Напряжение. Обозначение. Единицы измерения. Формула

Формула разности потенциалов между двумя точками

Формула разности потенциалов между точками в поле статического заряда

Измерение разности потенциалов. Электрометр


На замкнутой траектории работа электростатического поля всегда равна нулю. Поля, обладающие таким свойством, называют потенциальными.


Работу потенциального поля можно выразить через изменение потенциальной энергии.

A = - (Wp2- Wp1)

формула справедлива для любого электростатического поля.


Потенциальная энергия в электростатическом поле пропорциональна заряду. Это справедливо как для однородного поля, так и для любого другого.

Следовательно, отношение потенциальной энергии к заряду не зависит от помещенного в поле заряда.

Это позволяет ввести новую количественную характеристику поля – потенциал, не зависящую от заряда помещенного в поле.


Подобно напряженности, характеризующей силу, действующую на единичный положительный заряд, вводится величина, характеризующая потенциальную энергию единичного положительного заряда – потенциал.


Потенциал электростатического поля в данной точке – скалярная физическая величина, равная отношению потенциальной энергии, которой обладает пробный положительный заряд, помещенный в данную точку поля, к величине этого заряда.

φ =

Единица измерения – В (Вольт)

1 В = 1 Дж/Кл


Вольт равен потенциалу точки поля, в которой заряд в 1 Кл обладает потенциальной энергией 1 Дж.


Потенциал φ – скаляр. Это энергетическая характеристика поля; он определяет потенциальную энергию заряда q в данной точке поля.


Найдем потенциальную энергию заряда

φ =  Þ Wq = qφ


Потенциал электростатического поля точечного заряда +Q:

(потенциал сферы определяется той же формулой)

W+q = ; φ =  Þ φ =


Потенциал не зависит от величины пробного заряда.


На одинаковом расстоянии от заряда, т.е. на поверхности сферы вокруг него, потенциал всех точек одинаков.


Эквипотенциальная поверхность – поверхность, во всех точках которой потенциал имеет одно и то же значение(Геометрическое место точек, имеющих одинаковый потенциал)

Эквипотенциальные поверхности однородного поля представляют собой плоскости, а поля точечного заряда – концентрические сферы


Подобно силовым линиям, эквипотенциальные поверхности качественно характеризуют распределение поля в пространстве.

При удалении от положительного заряда +Q потенциал уменьшается, а при удалении от отрицательного заряда –Q потенциал возрастает.


Линии напряженности электростатического поля перпендикулярны эквипотенциальным поверхностям и направлены от поверхности с большим потенциалом к поверхности с меньшим.

Вектор напряженности перпендикулярен эквипотенциальным поверхностям и направлен в сторону уменьшения потенциала.


Эквипотенциальной является поверхность любого проводника в электростатическом поле. Силовые линии перпендикулярны поверхности проводника. Причем не только поверхность, но и все точки внутри проводника имеют один и тот же потенциал. Напряженность поля внутри проводника равна нулю, значит и равна нулю разность потенциалов между любыми точками проводника.


Эквипотенциальные поверхности и линии напряженности заряженных пластин


Работа силы электростатического поля равна произведению модуля перемещения заряда к разности потенциалов в начальной и конечной точках.

Aq = q(φ1 - φ2)

(Работа в электростатическом поле Aq = Fkh = qEh)


Можно дать еще одно определение потенциала:

Потенциал в данной точке поля численно равен работе сил электростатического поля по перемещению единичного положительного заряда из этой точки в точку, принятую за нуль потенциала.(обычно на бесконечность, принимаемую за нуль потенциала))


Практическое значение имеет на сам потенциал в точке, а изменение потенциала, которое не зависит от выбора нулевого уровня отсчета потенциала.


При перемещении заряда в поле:

Wp = q φ (потенциальная энергия)

A = - (Wp2- Wp1) = - q (φ2– φ1) = q (φ1 – φ2) = qU,

где U = φ1 – φ2 - разность потенциалов в начальной и конечной точках траектории.


Разность потенциалов (напряжение) между двумя точками равна отношению работы поля по перемещению заряда из начальной точки в конечную к этому заряду:

 U = φ1 – φ2 =

Единица измерения – В (Вольт) В =


Разность потенциалов обычно называют напряжением и обозначают U.

Aq = qU


Разность потенциалов (напряжение) между двумя точками численно равна работе сил электростатического поля при перемещении единичного положительного заряда из начальной точки в конечную.

А+1 = U (Дж)

1 В – разность потенциалов двух точек электростатического поля, при перемещении между которыми заряда 1 Кл поле совершает работу в 1 Дж.


Разность потенциалов между двумя точками, находящимися на расстоянии d друг от друга в однородном электростатическом поле вдоль линий напряженности:

U = Ed


Разность потенциалов между точками 1 и 2, находящимися на расстояниях r1 и r2 от точечного заряда +Q:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.