рефераты скачать

МЕНЮ


Шпаргалки по философии (кандидатский минимум)

Обоснование элеатами (Парменид, Зенон) этой необычной идеи поставило ряд проблем, касающихся свойств пространства, времени и движения. Из принципа неделимости бытия следовала невозмож­ность движения тел, так как тело — это часть (фрагмент) мира, а его движение представляет собой изменение его положения (места) в пространстве в различные моменты времени. Движение тел невоз­можно, если неделим мир, неделимо пространство и время. Но это противоречило наблюдаемым фактам движения тел.

На эти возражения известный древнегреческий философ Зенон от­ветил рядом контраргументов, получивших название апорий Зенона. В них доказывалось, что с позиций теоретического разума представле­ние о движении тел приводит к парадоксам. Например, апория «Стре­ла» демонстрировала следующий парадокс: в каждый отдельный мо­мент времени летящая стрела может быть рассмотрена как покоящаяся в некоторой точке пространства. Но сумма покоев не дает движения, а значит, летящая стрела покоится. В других апориях Зенон выявляет па­радоксы, связанные с представлениями о бесконечной делимости про­странства. Например, в апории «Ахилл и черепаха» утверждалось, что самый быстрый бегун Ахилл не догонит черепаху, так как сначала ему нужно пробежать половину дистанции между ним и черепахой, а она за это время отползет на некоторое расстояние, затем Ахиллу придется преодолевать половину новой дистанции, а черепаха вновь отползет на определенное расстояние, и так до бесконечности.

Самое интересное, что в этих, на первый взгляд весьма экзотичес­ких рассуждениях были поставлены проблемы, к которым потом, на протяжении более двух тысячелетий, не раз возвращалась философ­ская и научная мысль. В преддверии возникновения механики мыс­лители позднего Средневековья обсуждали вопрос: можно ли гово­рить о движении тела в точке пространства? Если движение характеризуется скоростью, а скорость — это путь, деленный на вре­мя, то в точке не может быть скорости, поскольку точка — это нуле­вое расстояние, а ноль, деленный на t, дает ноль. Значит, движущееся тело в точке покоится.

После возникновения механики Галилея в процессе поисков обоб­щающей теории механических движений (завершившихся механикой Ньютона) пришлось вновь решать эту проблему в связи с обоснование ем понятия мгновенной скорости. Поставленная философией проблема трансформировалась в конкретно-научную. Ее решение было получено благодаря развитию в математике теории пределов и методов дифференциального и интегрального исчислений, применены в физике.

между равноправными гражданами, и единственным критерием была обоснованность предлагаемого норматива. Этот сложившийся в куль­туре идеал обоснованного мнения был перенесен античной филосо­фией и на научные знания. Именно в греческой математике мы встре­чаем изложение знаний в виде теорем: «дано — требуется доказать — доказательство». Но в древнеегипетской и вавилонской математике такая форма не была принята, здесь мы находим только нормативные рецепты решения задач, излагаемые по схеме: «Делай так!»... «Смот­ри, ты сделал правильно!»

Характерно, что разработка в античной философии методов по­стижения и развертывания истины (диалектики и логики) протекала как отражение мира сквозь призму социальной практики полиса. Первые шаги к осознанию и развитию диалектики как метода были связаны с анализом столкновения в споре противоположных мнений (типичная ситуация выработки нормативов деятельности на народ­ном собрании). Что же касается логики, то ее разработка в античной философии началась с поиска критериев правильного рассуждения в ораторском искусстве, и выработанные здесь нормативы логического следования были затем применены к научному рассуждению.

Применение образцов теоретического рассуждения к накоплен­ным на этапе пред науки знаниям математики постепенно выводило ее на уровень теоретическою познания. Уже в истоках развития ан­тичной философии были предприняты попытки систематизировать математические знания, полученные в древних цивилизациях, и при­менить к ним процедуру доказательства. Так, Фалесу, одному из ран­них древнегреческих философов, приписывается доказательство тео­ремы о равенстве углов основания равнобедренного треугольника (в качестве факта это знание было получено еще в древнеегипетской и вавилонской математике, но оно не доказывалось в качестве теоре­мы). Ученик Фалеса Анаксимандр составил систематический очерк геометрических знаний, что также способствовало выявлению накоп­ленных рецептов решения задач, которые следовало обосновывать и доказывать в качестве теорем.

Важнейшей вехой на пути создания математики как теоретической науки были работы пифагорейской школы. Ею была создана картина мира, которая хотя и включала мифологические элементы, но по основным своим компонентам была уже философско-рациональным , образом мироздания. В основе этой картины лежал принцип: началом всего является число. Пифагорейцы считали числовые отношения  ключом к пониманию мироустройства. И это создавало особые пред-it посылки для возникновения теоретического уровня математики. Задачей становилось изучение чисел и их отношений не просто как мо­делей тех или иных практических ситуаций, а самих по себе, безотно­сительно к практическому применению. Ведь познание свойств и от­ношений чисел теперь представало как познание начал и гармонии космоса. Числа представали как особые объекты, которые нужно по­стигать разумом, изучать их свойства и связи, а затем уже, исходя из знаний об этих свойствах и связях, объяснить наблюдаемые явления. Именно эта установка характеризует переход от чисто эмпирического познания количественных отношений (познания, привязанного к на­личному опыту) к теоретическому исследованию, которое, оперируя абстракциями и создавая на основе ранее полученных абстракций но­вые, осуществляет прорыв к новым формам опыта, открывая неизве­стные ранее вещи, их свойства и отношения.

В пифагорейской математике, наряду с доказательством ряда тео­рем, наиболее известной из которых является знаменитая теорема Пифагора, были осуществлены важные шаги к соединению теорети­ческого исследования свойств геометрических фигур со свойствами чисел. Связи между этими двумя областями возникающей математи­ки были двухсторонними. Пифагорейцы стремились не только ис­пользовать числовые отношения для характеристики свойств геомет­рических фигур, но и применять к исследованию совокупностей чисел геометрические образы. Так, число «10», которое рассматрива­лось как совершенное число, завершающее десятки натурального ря­да, соотносилось с треугольником, основной фигурой, к которой при доказательстве теорем стремились свести другие геометрические фи­гуры. Соотношение числа «10» и равностороннего треугольника изо­бражались следующей схемой:

I

I         I

I         I         I

I         I         I         I

Здесь первый ряд соответствует «1», второй — «2», третий — числу «3», четвертый — числу «4» а сумма их дает число «10» (1+2+3+4=10).

Нужно сказать, что связь геометрии и теории чисел обусловила по­становку перспективных проблем, которые стимулировали развитие математики и привели к ряду важных открытий. Так, уже в античной математике при решении задачи числового выражения отношения гипотенузы к катетам были открыты иррациональные числа. Исследование «фигурных чисел», продолжающее пифагорейскую тради­цию, также получило развитие в последующей истории математики.

Разработка теоретических знаний математики проводилась в ан­тичную эпоху в тесной связи с философией и в рамках философских систем. Практически все крупные философы Античности — Демокрит, Платон, Аристотель и другие — уделяли огромное внимание ма­тематическим проблемам. Они придали идеям пифагорейцев, отяго­щенным многими мистико-мифологическими наслоениями, более строгую, рациональную форму. И Платон, и Аристотель, хотя и в раз­ных версиях, отстаивали идею, что мир построен на математических принципах, что в основе мироздания лежит математический план. Эти представления стимулировали как развитие собственно матема­тики, так и ее применение в различных областях изучения окружаю­щего мира. В античную эпоху уже была сформулирована идея о том, что язык математики должен служить пониманию и описанию мира. Как подчеркивал Платон, «Демиург (Бог) постоянно геометризирует», т.е. геометрические образцы выступают основой для постижения космоса. Развитие теоретических знаний математики в античной культуре достойно завершилось созданием первого образца научной теории — евклидовой геометрии. В принципе, ее построение, объеди­нившее в целостную систему отдельные блоки геометрических задач, решаемых в форме доказательства теорем, знаменовано превращение математики в особую, самостоятельную науку.

Вместе с тем в Античности были получены многочисленные при­ложения математических знаний к описаниям природных объектов и процессов. Прежде всего, это касается астрономии, где были осущест­влены вычисления положения планет, предсказания солнечных и лунных затмений, предприняты смелые попытки вычислить размеры Земли, Луны, Солнца и расстояния между ними (Аристарх Самосский, Эратосфен, Птолемей). В античной астрономии были созданы две конкурирующие концепции строения мира: гелиоцентрические представления Аристарха Самосского (предвосхитившие последую­щие открытия Коперника) и геоцентрическая система Гиппарха и Птолемея. И если идея Аристарха Самосского, предполагавшая кру­говые движения планет по орбитам вокруг Солнца, столкнулась с трудностями при объяснении наблюдаемых перемещений планет на небесном своде, то система Птолемея, с ее представлениями об эпи­циклах, давала весьма точные математические предсказания наблю­даемых положений планет. Луны и Солнца. Основная книга Птоле­мея «Математическое построение» была переведена на арабский язык под названием «Аль-магисте» (великое) и затем вернулась в Европу как «Альмагест», став господствующим трактатом средневековой аст­рономии на протяжении четырнадцати веков.

В античную эпоху были сделаны также важные шаги в примене­нии математики к описанию физических процессов. Особенно ха­рактерны в этом отношении работы великих эллинских ученых так называемого александрийского периода — Архимеда, Евклида, Герона, Паппа, Птолемея и других. В этот период возникают первые теоретические знания механики, среди которых в первую очередь следует выделить разработку Архимедом начал статики и гидроста­тики (развитая им теория центра тяжести, теория рычага., открытие основного закона гидростатики и разработка проблем устойчивости и равновесия плавающих тел и т.д.). В александрийской науке был сформулирован и решен ряд задач, связанных с применением геоме­трической статики к равновесию и движению грузов по наклонной плоскости (Герон, Папп); были доказаны теоремы об объемах тел вращения (Папп), открыты основные законы геометрической опти­ки — закон прямолинейного распространения света, закон отраже­ния (Евклид, Архимед).

Все эти знания можно расценить как первые теоретические моде­ли и законы физики, полученные с применением математического доказательства. В александрийской науке уже встречаются изложения знаний, не привязанные жестко к натурфилософским схемам и пре­тендующие на самостоятельную значимость.

До рождения теоретического естествознания как особой, самосто­ятельной и самоценной области человеческого познания и деятельно­сти оставался один шаг, а именно: соединить математическое описа­ние и систематическое выдвижение тех или иных теоретических предположений с экспериментальным исследованием природы. Но именно этого последнего шага античная наука сделать не смогла.

Она не смогла развить теоретического естествознания и его техно­логических применений. Причину этого большинство исследовате­лей видят в рабовладении — использовании рабов в функции орудий при решении тех или иных технических задач. Дешевый труд рабов не создавал необходимых стимулов для развития солидной техники и технологии, а, следовательно, и обслуживающих ее естественнонауч­ных и инженерных знаний.

Действительно, отношение к физическому труду как к низшему сорту деятельности и усиливающееся по мере развития классового расслоения общества отделение умственного труда от физического порождают в античных обществах своеобразный разрыв между аб­страктно-теоретическими исследованиями и практически-утилитарными формами применения научных знаний. Известно, например, что Архимед, прославившийся не только своими математическими работами, но и приложением их результатов к технике, считал эмпи­рические и инженерные знания «делом низким и неблагородным» и лишь под давлением обстоятельств (осада Сиракуз римлянами) вы­нужден был заниматься совершенствованием военной техники и обо­ронительных сооружений. Архимед не упоминал в своих сочинениях о возможных технических приложениях своих теоретических иссле­дований, хотя и занимался такими приложениями. По этому поводу Плутарх писал, что Архимед был человеком «возвышенного образа мысли и такой глубины ума и богатства по знанию», что, «считая со­оружение машин низменным и грубым, все свое рвение обратил на такие занятия, в которых красота и совершенство пребывают не сме­шанными с потребностью жизни».

Но не только в этих, в общем-то внешних по отношению к науке, социальных обстоятельствах заключалась причина того, что античная наука не смогла открыть для себя экспериментального метода и ис­пользовать его для постижения природы. Описанные социальные предпосылки в конечном счете не прямо и непосредственно определя­ли облик античной науки, а влияли на нее опосредованно, через миро­воззрение, выражавшее глубинные менталитета античной культуры.


7.      Формирование предпосылок научного мышления в средневековых университетах.

Говоря о возникновении науки (эта проблема особенно обстоятельно рассмотрена в работах П. П. Гайденко, Л. М. Косаревой, Л. А. Микешиной, В. С. Степина и др.), надо подчеркнуть следующее. В античности и средние века в основном имело место философское познание мира. Здесь понятия "философия", "знание", "наука" фактически совпадали: это было по существу "триединое целое", не разделенное еще на свои части. Строго говоря, в рамках философии объединялись сведения и знания и о "первых причинах и всеобщих началах", об отдельных природных явлениях, о жизни людей и истории человечества, о самом процессе познания, формулировалась определенная совокупность логических (Аристотель) и математических (Евклид) знаний и т.п. Все эти знания существовали в пределах единого целого (традиционно называемого философией) в виде ее отдельных аспектов, сторон. Иными словами, элементы, предпосылки, "ростки" будущей науки формировались в недрах другой духовной системы, но они еще не выделялись из них как автономное, самостоятельное целое.

Действительно, предпосылки науки создавались в древневосточных цивилизациях - Египте, Вавилоне, Индии, Китае, Древней Греции в форме эмпирических знаний о природе и обществе, в виде отдельных элементов, "зачатков" астрономии, этики, логики, математики и др. Вот почему геометрия Евклида - это не наука в целом, а только одна из ветвей математики, которая (математика) также лишь одна из наук, но не наука как таковая.

Причина такого положения, разумеется, коренится не в том, что до Нового времени не было таких великих ученых, как Коперник, Галилей, Кеплер, Ньютон и др., а в тех реальных общественно-исторических, социокультурных факторах, которые еще не создали объективных условий для формирования науки как особой системы знания, своеобразного духовного феномена и социального института - в этом "целостном триединстве".

Таким образом, в античный и средневековый периоды существовали лишь элементы, предпосылки, "кусочки" науки, но не сама наука (как указанное "целостное триединство"), которая возникает только в Новое время, в процессе отпочковывания науки от традиционной философии. Как писал в этой связи В. И. Вернадский, основа новой науки нашего времени - "это по существу создание XVIII-XX вв., хотя отдельные попытки (имеются в виду математические и естественнонаучные знания античности. - В. К.) и довольно удачные ее построения уходят в глубь веков... Современный научный аппарат почти целиком создан в последние три столетия, но в него попали обрывки из научных аппаратов прошлого".

В конце XVI - начале XVII в. происходит буржуазная революция в Нидерландах, сыгравшая важную роль в развитии новых, а именно капиталистических, отношений (которые шли на смену феодальным) в ряде стран Европы. С середины XVII в. буржуазная революция развертывается в Англии, наиболее развитой в промышленном отношении европейской стране. Если в феодальном обществе формирующиеся в виде "зачатков" научные знания были "смиренной служанкой церкви" (были "растворены" в "эфире" религиозного сознания) и им не позволено было выходить за рамки, установленные верой, то нарождающемуся новому классу - буржуазии - нужна была "полнокровная наука", т.е. такая система научного знания, которая - прежде всего для развития промышленности - исследовала бы свойства физических тел и формы проявления сил природы,

Буржуазные революции дали мощный толчок для невиданного развития промышленности и торговли, строительства, горного и военного дела, мореплавания и т.п. Развитие нового - буржуазного - общества порождает большие изменения не только в экономике, политике и социальных отношениях, оно сильно меняет и сознание людей. Важнейшим фактором всех этих изменений оказывается наука, и прежде всего экспериментально-математическое естествознание, которое как раз в XVII в. переживает период своего становления. Постепенно складываются в самостоятельные отрасли знания - астрономия, механика, физика, химия и другие частные науки. Следует в связи с этим сказать о том, что понятия "наука" и "естествознание" в этот период (и даже позднее) практически отождествлялись, так как формирование обществознания (социальных, гуманитарных наук) по своим темпам происходило несколько медленнее.

Таким образом, для возникновения науки в XVI-XVII вв., кроме общественно-экономических (утверждение капитализма), социальных (перелом в духовной культуре, подрыв господства религии и схоластически-умозрительного способа мышления) условий, необходим был определенный уровень развития самого знания, "запас" необходимого и достаточного количества фактов, которые бы подлежали описанию, систематизации и теоретическому обобщению. Поэтому-то первыми возникают механика, астрономия и математика, где таких фактов было накоплено больше. Они-то и образуют "первоначальное целое" единой науки как таковой, "науки вообще" в отличие от философии. Отныне основной задачей познания стало не "опутывание противника аргументацией" (как у схоластов), а изучение - на основе реальных фактов - самой природы, объективной действительности.

Тем самым, в отличие от традиционной (особенно схоластической) философии, становящаяся наука Нового времени кардинально по-новому поставила вопросы о специфике научного знания и своеобразии его формирования, о задачах познавательной деятельности и ее методах, о месте и роли науки в жизни общества, о необходимости господства человека над природой на основе знания ее законов.

Знания, которые формируются в эпоху Средних веков в Европе, вписаны в систему средневекового миросозерцания, для которого характерно стремление к всеохватывающему знанию, что вытекает из представлений, заимствованных из античности: подлинное знание - это знание всеобщее, аподиктическое (доказательное). Но обладать им может только творец, только ему доступно знать, и это знание только универсальное. В этой парадигме нет места знанию неточному, частному, относительному, неисчерпывающему.

Так как все на земле сотворено, то существование любой вещи определено свыше, следовательно, она не может быть несимволической. Вспомним новозаветное: "Вначале было Слово, и Слово было у Бога, и Слово было Бог". Слово выступает орудием творения, а переданное человеку, оно выступает универсальным орудием постижения мира. Понятия отождествляются с их объективными аналогами, что выступает условием возможности знания. Если человек овладевает понятиями, значит, он получает исчерпывающее знание о действительности, которая производна от понятий. Познавательная деятельность сводится к исследованию последних, а наиболее репрезентативными являются тексты Святого писания.

Все "вещи видимые" воспроизводят, но не в равной степени "вещи невидимые", т.е. являются их символами. И в зависимости от приближенности или отдаленности от Бога между символами существует определенная иерархия. Телеологизм выражается в том, что все явления действительности существуют по промыслу Бога и для предуготовленных им ролей (земля и вода служат растениям, которые в свою очередь служат скоту).

Как же, исходя из таких установок, может осуществляться познание? Только под контролем церкви. Формируется жесткая цензура, все противоречащее религии подлежит запрету. Так, в 1131 г. был наложен запрет на изучение медицинской и юридической литературы. Средневековье отказалось от многих провидческих идей античности, не вписывающихся в религиозные представления. Так как познавательная деятельность носит теологически-текстовый характер, то исследуются и анализируются не вещи и явления, а понятия. Поэтому универсальным методом становится дедукция (царствует дедуктивная логика Аристотеля). В мире, сотворенным Богом и по его планам, нет места объективным законам, без которых не могло бы формироваться естествознание. Но в это время существуют уже области знаний, которые подготавливали возможность рождения науки. К ним относят алхимию, астрологию, натуральную магию и др. Многие исследователи расценивают существование этих дисциплин как промежуточное звено между натурфилософией и техническим ремеслом, так как они представляли сплав умозрительности и грубого наивного эмпиризма.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.