рефераты скачать

МЕНЮ


Дипломная работа: Проектирование отделения вакуумной сепарации титановой губки на базе АО "УК ТМК"

Кроме разделки отсепарированного блока губки на соответствующие части, приемом, улучшающим качество, является рассев губки по фракциям крупности после ее дробления. Дробление губки вообще необходимо, так как в противном случае ее переплавка затруднительна. В самые мелкие фракции губки (менее 3 мм) попадает металл более хрупкий, который, как правило, идет в отходы.

Переработка и использование отходов титана являются важным переделом, который существенно влияет на экономику всего производства этого металла.

Товарные партии титановой губки составляют из фракций 12 — (—70), 12 — (—25) и 2— (—12) мм. Допускается комплектование партий из фракций 6 — (—12) и 2 — (—6) мм. Все товарные партии независимо от крупности не должны содержать дефектной губки, соответствующей установленным эталонам.

В связи с жесткими требованиями к качеству титановой губки перед упаковкой в тару на транспортере ее тщательно сортируют по внешнему виду. От губки отделяют отходы (недосепарированная, окисленная, оплавленная губка, шламистые низы, гарниссаж с железом, губка наклепанная окисленная, некачественные пленки верхней части крицы), а также посторонние включения, случайно оказавшиеся в губке.

Всю качественную губку после сортировки транспортером подают в промежуточную емкость и по мере накопления комплектуют в товарные партии, и затем упаковывают в тару.

Отходы первичной сортировки подвергают более тщательной вторичной сортировке на столах, откуда отобранную качественную губку возвращают на составление товарных партий, а остальную губку направляют в отделение переработки отходов, где ее повторно несколько раз дробят до фракции —30 мм, производят грохочение и отсев и для окончательной сортировки подают на сортировочные столы. Качественную губку возвращают в отделение для составления товарных партий, а брак и отсевы смешивают и направляют на пресс для брикетирования.

В процессе работы не допускается попадание некачественной губки в комплектуемую товарную партию. Если в пробе обнаруживается хотя бы один кусочек дефектной губки, партию считают забракованной и возвращают на повторную сортировку.

Упаковка титановой губки в тару. Титановую губку упаковывают в специально предназначенную тару — контейнеры емкостью 500 л или бочки емкостью 250 л. Тару с титановой губкой тщательно герметизируют, воздух откачивают, а свободный объем заполняют аргоном до небольшого избыточного давления.

Дробленую губку после получения результатов анализа из промежуточной емкости засыпают в бункер, подают на конусный делитель для усреднения и равномерно засыпают в тару.

Тару, поступающую для заполнения губкой, предварительно осматривают, очищают, проверяют на герметичность. После заполнения и взвешивания на весах на тару наносят маркировку.

Для удовлетворения потребностей западного рынка на комбинате установлен жесткий контроль качества, который адаптирован к требованиям производителей авиационных двигателей и аэрокосмоса. Комбинат работает согласно международных стандартов качества:

- ISO 9002 - 94 - Система качества. Модель для обеспечения качества при производстве, монтаже и обслуживании.

- AS 9100 - 99 - Система качества. Авиакосмос. Модель обеспечения качества при проектировании, разработке, производстве, монтаже и обслуживании.


5. Контроль и автоматизация технологических процессов

На переделе вакуумной сепарации реакционной массы наибольшее количество точек контроля и автоматического регулирования сосредоточены непосредственно на участке электропечей и аппаратов сепарации с вакуум – системами.

Максимально возможная и надежная автоматизация контроля и регулирования на этом участке обеспечивают высокую производительность аппаратов, хорошее качество титановой губки и снижение трудозатрат.

Основными технологическими контролируемыми и автоматически регулируемыми параметрами в отделении вакуумной сепарации являются; температурный режим печей вакуумной сепарации, остаточное давление в аппарате сепарации (вакуум) и остаточное давление в печи сепарации (контрвакуум).

Как было отмечено в п.3.1.6 магний и хлорид магния начинают испарятся при температуре 900 °С, но для активизации процесса сепарации температуру необходимо повысить. Температура процесса сепарации лимитируется 1085°С, при той температуре железо стенки реторты начинает взаимодействовать с титаном. Конструкция печи предусматривает четыре зоны нагрева реторты реактора по вертикали. Температуры зон предлагаются следующие: 1- 970 °С, 2 – 1010 °С, 3 – 1020 °С, 4 – 1010 °С, значит в процессе сепарации необходимо независимо регулировать температуру четырех зон одновременно. Этой производится с помощью термопар и котроллеров Р – 130, один контроллер на одну печь. Величина уставок по зонам печи сепарации при ведении процесса;

1- 970 ± 10°С, 2 – 1010 ± 10°С, 3 – 1020 ± 10°С, 4 – 1010 ± 10°С.

Понижение давления в аппарате необходимо для протекания процесса сепарации при заданных температурах. Промышленные насосы могут откачивать газы из аппарата до остаточного давления порядка 0,13 Па. Повышение остаточного давления в аппарате более 13,3 Па при высокотемпературной выдержке нежелательно, это может происходить при разгерметизации аппарата, прогара стенки реторты, что неотвратимо ведет к ухудшению качества титановой губки. Поэтому величину остаточного давления в аппарате необходимо контролировать.

При высоких температурах конструкция стальной реторты теряет необходимую жесткость для удержания правильной цилиндрической формы при глубоком вакууме внутри реторты. Поэтому необходимо понижать давление между стенкой реторты и печью сепарации. Печь вакуумной сепарации делается герметичной, поэтому есть возможность для создания контрвакуума. Научные исследования и практика работы показала, что остаточного давления 6665 Па достаточно для сохранения ретортой прежней формы.

Осуществление автоматического контролирования и регулирования технологического процесса.

Технологический процесс сепарации губчатого титана управляется автоматизированной системой.

АСУТП процесса сепарации представляет собой 2-х уровневую распределённую систему управления отдельными аппаратами.

На нижнем уровне АСУТП решаются задачи:

-  автоматическое регулирование температурой зон печи сепарации;

-  автоматический контроль вакуума в аппарате;

-  автоматическое управление вакуумными насосами аппарата;

-  автоматическое определение окончания сепарации.

На нижнем уровне каждой печи установлены контроллеры Ремиконт-130, которые объединены локальной вычислительной сетью “Транзит” по четыре контроллера в каждом.

На верхнем уровне АСУТП процессов сепарации производится:

-  отображение мнемосхемы аппарата;

-  отображение на мнемосхеме текущих значений температуры, вакуума, длительности высокотемпературной выдержки в цифровой и графической форме;

-  регистрация и документирование на магнитном носителе температуры, вакуума, количество электроэнергии.

Контроль и регулирование температуры по зонам в аппарате сепарации выполнен с применением контроллера Ремиконт -130. Один контроллер на одну печь (позиция А1).

Температура в печи измеряется первичными преобразователями – термопары хромель-алюмелевые (поз. 4 а-1 – 4 2-1). Сигнал с термопар поступает на усилители сигнала термопар БУТ (поз. 4 д-1; 4 е-1), преобразующие сигнал термопар в унифицированный токовый сигнал 0 – 5 ma. Сигнал с БУТ заведён на клеммные разъёмы контроллера Ремиконт -130.

В контроллере Ремиконт -130 заложена программа управления температурным режимом зон печи.

В контроллере Р-130 происходит сравнение сигнала, поступающего с термопары, с заданием, заложенным в программе.

Если температура в печи выше задания, то контроллер выдаёт команду на отключение нихромового нагревателя зоны, если температура в печи ниже задания, то выдаётся команда на включение нихромового нагревателя. Включение и отключение зон происходит через усилители мощности БУМ (поз. 4 ж-1).

Резервирование схемы микропроцессорного управления осуществляется машиной “Марс-200Р” (поз. А-4). Сигналы термопар (поз. 4 а – 4 2-1) параллельно заводятся на машину централизованного контроля и управления “Марс-200Р” (поз. А-4).

Сигналы управления нихромовыми нагревателями через переключатель S B-1 поступают или от контроллера Ремиконт (поз. А-1), или в аварийном случае от Марс-200Р (поз. А-4).

С помощью прибора ЦР (поз. 43-1) контролируется температура зон печи.

При аварийном завышении температуры сигнал с контроллера Ремиконт-130 поступает на лампы сигнализации, установленные на щите (поз. HL 5-1, HL 6-1, HL 7-1, HL-8). При аварийном завышении температурного режима эти лампы мигают “частым” светом. Лампы сигнализации (поз. HL 1-1, HL 2-1, HL 3-1, HL 4-1) сигнализируют об аварийном значении температуры при регулировании температурного режима “Марс-200Р”.

Контроль вакуума в аппарате сепарации осуществляется термопарной лампой ПМТ2 (поз. 3 а-1), сигнал с которой заводится на вакуумметр термопарный ВТ-2АП (поз. 3 б). С выхода прибора ВТ-2А (поз. 3б) сигнал поступает на нормирующий преобразователь Ш-72 (поз. 3 в-1), преобразующий сигнал вакуумметра в унифицированный сигнал 0 – 5 ma, который заведён в контроллер Ремиконт -130.

Сигнализация вакуумного режима.

Сигнализация нарушения режима вакуума осуществляется лампой сигнализации (поз. HL 9-1) , установленной на щите.

В контроллере заложена программа, в соответствии с которой текущее значение вакуума сравнивается с аварийным значением, заложенным в программе, и при изменении вакуума ниже заданного значения лампа мигает частым светом.

Управление вакуумными насосами в автоматическом режиме осуществляется с помощью контроллера Ремиконт -130. В контроллере заложена программа управления вакуумными насосами: механическими ВН-6Г, ВН-1МГ и паромасленными БН-2000. Первоначальный пуск процесса дистилляции предусматривает включение механического насоса ВН-6Г. Для этого контроллер Ремиконт -130 (поз. А1) включает:

-  магнитный пускатель (поз. 3 ж-1) насоса ВН-6Г;

-  электрифицированный вакуумный вентиль (поз. 3 Е-1).

После достижения вакуума в аппарате, равного 430 микрон, по программе, заложенной в контроллер, включается паромасленный насос, имеющий более высокую производительность, для чего контроллер (поз. А 4) включает:

- магнитный пускатель (поз. 3 д-1) для подачи напряжения на нагреватель вакуумного масла в насосе БН-2000;

- электрифицированный вентиль (поз. 3 з-1);

- электрифицированный вентиль (поз. 3 Е-1).

При этом паромасленный насос БН-2000 и механический насос ВН-6Г включены последовательно.

Механический насос ВН-6Г создаёт предварительное разряжение для насоса БН-2000. С целью экономии электроэнергии через 4 часа после достижения вакуума 430 микрон по команде контроллера (поз. А 4) насос ВН-6Г останавливается, а насос ВН-1МГ включается.

Контроллер ( поз. А 4) осуществляет:

- включение пускателя (поз. З 2-1) насоса ВН-1МГ;

- отключение пускателя (поз. 3 ж-1) насоса ВН-6Г;

- включение электрифицированного вентиля (поз. 3 и-1) на линии вакуума насоса ВН-1МГ;

- отключение электрифицированного вентиля (поз. 3 К-1) на линии вакуума насоса ВН-6Г.

Отключение вакуумных насосов после окончания процесса сепарации осуществляется автоматически контроллером Ремиконт Р-130. Автоматическое окончание процесса сепарации осуществляется по истечению 72 часов высокотемпературной выдержки.

Контроллер (поз. А 4) производит:

- отключение пускателей насосов БН-2000, ВН-1МГ (поз. 3 ж-1, 3 д-1);

- закрытие электрифицированных вентилей на линии вакуума (поз. 3 з-1, 3 к-1). Сигнализация об окончании процесса сепарации осуществляется контроллером Ремиконт -130 (поз. А 4) путём включения на щите лампы сигнализации HL 10-1.

Сигнал о количестве электроэнергии, потребляемой на процесс сепарации, измеряется счётчиком СА4У-И672Д (поз. 6 а-1) и поступает на вход контроллера Р-130.

Контроль температуры отходящей воды с реторты конденсатора и фланцев. Температура отходящей воды с реторты конденсатора измеряется термометром сопротивления ТСМ-50 (поз. 2 а-1). Сигнал заводится на контроллер (поз. А 4). Сигнал термореле ТР-200 (поз. 1 а-1) поступает на вход контроллера (поз. А 4) для контроля максимальной температуры охлаждающей воды фланцев печи, аппарата, вакуумных насосов.

Верхний уровень АСУТП представляет собой автоматизированное рабочее место оператора-технолога, созданное с помощью локальной вычислительной сети. Локальная вычислительная сеть “Транзит” предназначена для объединения микропроцессорных контроллеров Ремиконт -130 для организации рабочего места оператора-технолога.

Объединение контроллеров Ремиконт -130 (поз. А 1) осуществляется с помощью блока БШ (поз. А 2). На один БШ подсоединяется до 15 штук контроллеров. Сигналя с блока шлюза БШ (поз. А 2) поступают на IBM совместимый компьютер (поз. А 3).

На компьютере (поз. А 3) реализовано автоматизированное рабочее место оператора-технолога.

На АРМ отображены мнемосхемы процесса. Отдельные элементы мнемосхемы отображают критические значения параметров температурного режима и вакуума. На мнемосхеме приведены цифровые значения параметров температуры и вакуума. При критических значениях изменяется цвет текущих параметров. В АРМ реализованы текстовые сообщения: аварийные и технологические. Технологические сообщения отражают в хронологическом порядке все операции в процессе: установку аппарата в печь, проплавление магниевой заглушки, выход процесса на высокотемпературную выдержку, окончание процесса, т.е. прохождение всех технологических стадий. Аварийные сообщения отражают ситуации, связанные с отклонениями параметров от нормы.

Функциональная схема контроля и автоматизации процесса вакуумной сепарации представлена на чертеже.

Отделение питается электрической энергией от двух коммутационных пунктов КП – 3 и КП – 4 и распределительных пунктов РП – 9 и РП – 10.

КП – 3 питается от шинопровода ГПП – 5 на которую поступает энергия от Бухтарминской ГЭС.

КП – 4 питается от шинопровода Согринской ТЭЦ.

РП – 10 – от КП – 3, РП – 9 – от КП –4.

Отделение сепарации имеет 11 встроенных подстанций, в каждой из которых установлены по три понижающих трансформатора 10 / 0,4 кВ на1000 кВт или 1600 кВт.

Основными потребителями электроэнергии являются печи вакуумной сепарации, вакуумные насосы. В качестве понижающих трансформаторов применяются маслонаполненные трансформаторы типа ТМ – 1000, 10 / 0,4 и ТМ – 1600, 10 / 0,4.


6. Экологичность и безопасность проекта

6.1 Анализ вредных и опасных производственных факторов

Технологические процессы в проектируемом цехе связаны с применением и получением вредных химических веществ в различных агрегатных состояниях. Эти вещества при нарушении технологии и несоблюдении профилактических мер могут попасть в атмосферу производственных помещений, землю, сточные воды и представить опасность для самих рабочих и для населения, живущего вблизи предприятия.

Классификация производственных факторов, опасных для жизни человека. Производственные факторы, влияющие на жизнь человека:

- движущиеся части машин и механизмов;

- электрический ток;

- промышленные яды и агрессивные жидкости;

-  промышленная пыль и производственный шум.

Мгновенное действие производственной среды на организм человека, связанное с нарушением тканей и органов человека, называют производственной травмой. Медленное разрушение и нарушение физиологических функций организма называют профессиональным заболеванием.

Движущиеся части машин и механизмов являются опасными, когда они доступны для случайного прикосновения к ним человека во время работы. Все вращающиеся механизмы имеют защитные кожухи, окрашенные в ярко-красный цвет. Соединительные муфты имеют защитные ограждения.

Все рабочие площадки, проемы, проходы, лестницы, находящиеся на высоте более 0,5 метра, выполняются с ограждениями 1200 мм. Уклон лестниц 45-59 градусов.

Пол на отметке 0,000 выполнен из рифленых чугунных плит. Уборку полов производят мокрыми опилками.

Ремонт и чистку печей производят при обязательном присутствии наблюдающего. Нахождение людей под хвостовиками работающих аппаратов восстановления запрещается.

Тепловые факторы вызывают у человека ожоги. Они возникают при соприкосновении человека с нагретыми частями производственного оборудования, в результате действия расплавленного металла, горячей жидкости, пара или газа. При заливке жидкого магния в реактор, при сливе хлорида магния в ковш из аппарата, для предупреждения возможного выброса металла и расплава соли, все оборудование, и инструменты должны предварительно быть просушены и прогреты.

Действие электрического тока на организм человека проявляется в сложной и многообразной форме. Поражение электрическим током можно разделить на две группы:

- поражение внутреннего характера;

-  внешнее поражение (ожоги).

Наибольшую опасность представляют электрические удары, появляющиеся вследствие прохождения электрического тока через тело человека. Принято считать безопасным для человека ток до 0,01 А. Среднее сопротивление тела человека составляет 1000 Ом.

В проектируемом цехе предусмотрено дистанционное включение и отключение оборудования при помощи магнитных пускателей, световая и звуковая сигнализации. Во избежание повреждения электрическим током необходимо прокладку кабелей вести в трубах. Для того чтобы при ремонте избежать случайных поражений током, необходимо предусмотреть электроблокировку. Все электрооборудование должно иметь заземление.

Распределительные щитовые находятся в отдельных помещениях, вход в которые разрешен только лицам, имеющим допуск.

Работы, связанные с включением электрического оборудования, производятся в соответствии с требованиями “Правил технической эксплуатации электроустановок потребителей и правил техники безопасности при эксплуатации электроустановок потребителей.

Характеристика вредных веществ, специфичных для данного производства.

Тетрахлорид титана при обычных условиях, с температурой кипения 409,9 градусов К, попадает в атмосферу производственных помещений в виде жидкости или пара при разгерметизации оборудования.

TiCl4 - дымообразующее вещество, при воздействии с влагой воздуха образует белую пыль оксихлорида титана и токсичный хлорид водорода, который отсорбируется на частицах пыли оксихлорида титана, способен проникать в легкие. Предельно допустимая концентрация (ПДК) для HCl в атмосфере производственных помещений составляет 1мг/. Пары HCl поражают слизистую оболочку верхних дыхательных путей и вызывают токсические бронхиты. Попадание TiCl4 на кожу дает труднозаживающие ожоги II и III степеней.

Хлорид водорода (HCl) – бесцветный удушливый газ, растворяясь в воде, образует соляную кислоту. Токсичность проявляется в виде сильного раздражения верхних дыхательных путей.

В проектируемом цехе ядовитыми веществами являются: хлор, пары соляной кислоты, хлоридной окиси титана, титановой пыли. Допустимые концентрации в атмосфере рабочего помещения следующие:

-  хлор – 1,001 мг/дм3;

-  HCl – 0,005 мг/дм3;

-  Ti – 0,1 мг/дм3.

6.2 Мероприятия по охране труда и технике безопасности

Производство губчатого титана на всех переделах связано с применением и получением вредных химических веществ в различных агрессивных состояниях. Эти вещества при нарушении профилактических мер могут попасть в атмосферу производственных помещений, землю, сточные воды и представить опасность как для самих рабочих, так и для населения, живущего вблизи предприятия. В процессе производства рабочие управляют различными механизмами с электрическими приводами, обслуживают грузозахватные механизмы.

В этих условиях отклонения от правил технической эксплуатации, техники безопасности может вызвать аварию и несчастный случай.

Рабочие, впервые принятые на производство и не имеющие удостоверения по специальности проходят вводный инструктаж по технике безопасности в отделе охраны труда предприятия, который знакомит с общими правила поведения людей на территории завода и его цехов, с правилами пожарной безопасности.

Отдел охраны труда предприятия выдает рабочему на руки “Личную карточку инструктажа” и с этим документом его направляют непосредственно в цех. Администрация цеха обеспечивает вновь принятого рабочего спецодеждой, спецобувью, специальными средствами защиты, выделяет ему место в бытовой комнате, выдает на руки и направляет к мастеру, который отвечает за соблюдение требований охраны труда этим рабочим.

Рабочего допускают к самостоятельной работе только после прохождения им инструктажа на рабочем месте, сдачи экзамена по технике безопасности для конкретной специальности.

В процессе самостоятельной работы с рабочим не менее двух раз в году проводят повторный инструктаж по безопасности и плану ликвидации аварии. Важным значением для безопасных условий труда имеет соблюдение трудовой дисциплины. Игнорирование правил ношения защитной одежды, специальной обуви, средств защиты органов дыхания, выполнение чужих функций работы на неисправном оборудовании - основные причины аварии и несчастных случаев на производстве.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.