рефераты скачать

МЕНЮ


Контрольная работа: Уравнения линейной регрессии


Определитель не равен 0, ранг матрицы равен 2, достаточное условие идентификации выполняется. 2-е уравнение точно идентифицируемо.

3) В 3-м уравнении 2 эндогенные переменные y2, y3 (Н=2); отсутствует 1 экзогенная х4 (D=1).

1+1=2 — необходимое условие идентификации выполняется.

Составим матрицу из коэффициентов при отсутствующих переменных.

уравнение Отсутствующие переменные
у1 х4
1 -1 0
3 b21 а24

Определитель не равен 0, ранг матрицы равен 2-м, достаточное условие идентификации выполняется. 3-е уравнение точно идентифицируемо.

Т.о, если все 3 уравнения идентифицируемы, то и СФМ идентифицируема.

б) СФМ имеет вид:

Проверим систему на идентифицируемость, для этого проверим каждое уравнение на выполнение необходимого и достаточного условия идентификации.

1) В 1-м уравнении 2 эндогенных переменных y1, y3 (Н=2); отсутствующая экзогенная переменная х3 (D=1).

Составим матрицу из коэффициентов при отсутствующих переменных.

уравнение Отсутствующие переменные
у2 х3
2 -1 а23
3 0 0

Достаточное условие не выполнено, уравнение не идентифицируемо.

2) Во 2-м уравнении 2 эндогенных переменных y1, y2 (Н=2). Отсутствующая экзогенная переменная х2 (D=1). Необходимое условие D+1=H выполняется.

Составим матрицу из коэффициентов при отсутствующих переменных.

уравнение Отсутствующие переменные
у3 х2
1 b13 а12
3 -1 a32


Необходимое условие идентификации выполняется. 2-е уравнение точно идентифицируемо.

3) В 3-м уравнении 2 эндогенных переменных y1, y3 (Н=2); отсутствующая экзогенная переменная х3 (D=1). Необходимое условие D+1=H выполняется. Составим матрицу из коэффициентов при отсутствующих переменных.

уравнение Отсутствующие переменные
у2 х3
1 0 0
2 -1 a23

Достаточное условие не выполняется. 3-е уравнение не идентифицируемо.

Т.к. 1-е и 3-е уравнения не идентифицируемы, то и вся СФМ не является идентифицируемой.

Ответ: а) СФМ идентифицируема; б) СФМ не является идентифицируемой.

Задача 2 в

По данным таблицы для своего варианта, используя косвенный метод наименьших квадратов, построить структурную форму модели вида:


Табл. 2.2.

Вариант n y1 y2 x1 x2
6 1 77,5 70,7 1 12
2 100,6 94,9 2 16
3 143,5 151,8 7 20
4 97,1 120,9 8 10
5 63,6 83,4 6 5
6 75,3 84,5 4 9

Решение

Структурную модель преобразуем в приведенную форму модели.

Для нахождения коэффициентов первого приведенного уравнения используем систему нормальных уравнений.

Расчеты произведем в табл. 2.3.

Табл. 2.3.

n y1 y2 x1 x2

1 77,5 70,7 1 12 77,5 1 12 930 144 70,7 848,4
2 100,6 94,9 2 16 201,2 4 32 1609,6 256 189,8 1518,4
3 143,5 151,8 7 20 1004,5 49 140 2870 400 1062,6 3036
4 97,1 120,9 8 10 776,8 64 80 971 100 967,2 1209
5 63,6 83,4 6 5 381,6 36 30 318 25 500,4 417
6 75,3 84,5 4 9 301,2 16 36 677,7 81 338 760,5
557,6 606,2 28 72 2742,8 170 330 7376,3 1006 3128,7 7789,3
средн. 92,933 101,033 4,667 12

Подставив полученные значения в систему нормальных уравнений.

Решение этих уравнений дает значения d11=5,233; d12=5,616.

1-e уравнение ПФМ имеет вид:

Для нахождения коэффициентов d2k второго приведенного уравнения используем следующую систему нормальных уравнений

Расчеты произведем в табл. 2.3.

Подставив полученные значения в систему нормальных уравнений, получим

Решение этой системы дает значения d21=9,288; d22=4,696.

2-е уравнение ПФМ имеет вид


Для перехода от ПФМ к СФМ найдем х2 из второго уравнения.

Подставив это выражение в 1-е уравнение, найдем структурное уравнение.

т.о. b12=1,196; a11=-5,875.

Найдем х1 из 1-го уравнения ПФМ

Подставив это выражение во 2-е уравнение ПФМ, найдем структурное уравнение.

т.о. b21=1,775; a22=-5,272

Свободные члены СФМ находим из уравнений

линейный регрессия детерминация аппроксимация квадрат


Ответ: окончательный вид СФМ таков


Страницы: 1, 2, 3, 4, 5, 6


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.