рефераты скачать

МЕНЮ


Курсовая работа: Определение термодинамических активностей компонентов бронзы БрБ2

Видно, что для линии 1 высоких значений R2 удаётся достичь только при больших степенях полинома. К сожалению, при этом не очень точно вычисляются их коэффициенты. К тому же, с такими зависимостями трудно работать. Всё это послужило причиной того, что от данного способа автор работы отказался.

Способ №2. Было принято решение разделить функции на три части соответствующие температурам для первой части, для второй и для третьей (на рис. 2.1 эти части разделены вертикальными прямыми). На каждом из этих отрезков зависимость можно аппроксимировать полиномом меньшей степени. Результаты приведены в таблице 2.4.

Табл. 2.4. Аппроксимация частей зависимости Q=Q(T).

Линия Часть Полином

R2

1 1 Q = 76,812T - 39259 0,9437

Q = -1,2995T2 + 1371,1T - 361006

1
2 Q = -46,012T + 24707 1
3 Q = 51,263T - 28567 0,9981

Q = -0,1545T2 + 228,27T - 79216

1
2 1 Q = -51,085T + 39360 0,9991

Q = -0,1052T2 + 53,71T + 13310

1
2 Q = -27,883T + 27204 1
3 Q = -13,086T + 19091 0,9994

Q = 0,0224T2 - 38,784T + 26444

1

Задав таким образом зависимости Q=f(T) как полиномы второй степени и зафиксировав один из параметров x, N, T, нужно решить систему (2.8). В этом случае система будет состоять из двух трансцендентных уравнений, и решить их совместно можно только численными методами. Автору работы не удалось этого сделать.

Поэтому было принято решение пожертвовать точностью аппроксимации функций Q=f(T) и определить их как линейные зависимости. В этом случае Q=aT+b и температура будет входить в уравнения системы (2.8) только в первой степени, что позволяет исключить её, как неизвестное.

Воспользуемся условными обозначениями, которые уже были использованы ранее.

Пусть , а . Тогда первое уравнение системы (2.9) запишется в виде:

 (2.15)

Если перенести все слагаемые, содержащие Т, в левую часть, а все остальные – в правую часть уравнения, то получится:

 (2.16)

Осталось только выразить температуру в явном виде:

 (2.17)

Аналогично нужно выразить температуру и из второго уравнения системы (2.9):

 (2.18)

 (2.19)

 (2.20)

Приравняв правые части равенств (2.17) и (2.20) и умножив их на -1, приведём уравнение к окончательному виду:

 (2.21)

Параметра а и b определим из данных таблицы 2.4. Чтобы решить трансцендентное уравнение (2.21), нужно задаться одним из параметров x, или n и численными методами подобрать второй параметр, а затем определить и температуру по любому из уравнений (2.17) или (2.20).

Для решения была использована надстройка «поиск решения» пакета Microsoft Excel. Результаты решения представлены в таблице 2.5.

Табл. 2.5. Рассчитанный купол расслаивания твёрдого раствора при разных температурах

t, oC

Состав α-фазы (Cu) Состав γ-фазы (Ni)

x1

x2

N1

N2

0 0,727 0,273 2,8E-06 0,999997
25 0,723 0,277 0,000014 0,999986
40 0,72 0,28 0,000035 0,999965
83 0,71 0,29 0,00027 0,99973
116 0,70 0,30 0,001 0,999
141 0,69 0,31 0,002 0,998
161 0,68 0,32 0,004 0,996
178 0,67 0,33 0,007 0,993
191 0,66 0,34 0,010 0,990
203 0,65 0,35 0,014 0,986
241 0,60 0,40 0,042 0,958
261 0,55 0,45 0,061 0,939
279 0,50 0,50 0,077 0,923
307 0,45 0,55 0,128 0,872
322 0,40 0,60 0,174 0,826
331 0,35 0,65 0,224 0,776
334 0,30 0,70 0,273 0,727
334 0,285 0,715 0,285 0,715

Сравнение данных таблиц 2.1 и 2.5 можно провести визуально, нанеся данные на один график. Сравнение проведено на рисунке 2.2.

Страницы: 1, 2, 3, 4, 5


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.