рефераты скачать

МЕНЮ


Взаимодействие наук

     Очевидно, таким образом, что, если говорить о будущем, то для построения единой теории взаимодействия общества и природы, для рационального управления этим взаимодействием существенно важна взаимодополнительность познавательных средств и подходов общественных, естественных и технических наук. Но не менее важно и то, что такая взаимодополнительность оказывается необходимой и при решении конкретных и неотложных экологических проблем.

     Сходная ситуация складывается и в такой сравнительно недавно возникшей и интенсивно развивающейся отрасли знания, как эргономика. Ее задача – целостное проектирование и оптимизация трудовой деятельности человека, оперирующего с современными техническими устройствами и системами. Существует множество научных дисциплин, занятых изучением труда. Здесь и социология труда, и инженерная психология, и техническая эстетика, и физиология, и биомеханика, и гигиена труда. Наряду с этим многие естественные и технические науки исследуют и разрабатывают средства труда, такие, как современные высокомеханизированные и автоматизированные технические системы. Что же касается эргономики, то она, конечно, опирается на данные всех наук: общественных, естественных и технических, так или иначе изучающих труд. Однако она имеет особый объект исследования: системы "человек – машина – окружающая среда", которые она рассматривает в их целостности, во взаимодействии их компонентов. Такой комплексный подход – необходимое условие для создания новой техники, которая, обладая высокой производительностью, надежностью и экономичностью, может способствовать достижению социальных результатов – сохранению здоровья людей и развитию личности в процессе труда, повышению содержательности, эффективности и качества человеческой деятельности как в сфере труда, так и везде, где человеку приходится вступать в контакт с современной техникой.

     Обе рассмотренные проблемы можно интегрировать в качестве составных частей столь глобальной проблемы, как управление ходом научно-технической революции. Сюда входит выявление и изучение основных тенденций и вариантов НТР, анализ и оценка ее многообразных социальных последствий с тем, чтобы иметь возможность заранее предвидеть и нейтрализовать возможные негативные эффекты научно-технического прогресса.

     В более конкретном выражении эта проблема выступает как проблема всесторонней, комплексной оценки создаваемых и проектируемых технологических процессов и новых типов оборудования. Очевидно, такая комплексная оценка возможна только на основе тесной взаимосвязи между основными группами наук. Особая роль принадлежит здесь наукам общественным, призванным оценивать не только в целом, но и на уровне отдельных конкретных научно-технических нововведений с точки зрения интересов общественного развития и развития личности.

     Развитие эргономики и экологии – яркие примеры того, что ученые все чаще одновременно с крупными научно-техническими народнохозяйственными проблемами решают вопросы большого социального значения. В этом – характерная особенность научного поиска наших дней.

     В итоге процесс внедрения теперь уже не может быть делом отдельных талантов и умельцев, как и не может он опираться на старые организационные, финансовые, экономические и другие элементы производства. И осмыслить его в полной мере возможно только интегральными средствами науки, требующей ломки устарелых привычек и показателей.

     Усиление взаимодействия общественных, естественных и технических наук уже сегодня ставит перед наукой новые проблемы и методологического, и социально-организационного порядка. Коротко остановимся на некоторых из них.

     Прежде всего возникает вопрос о том, в каком отношении находятся эти процессы к существующему дисциплинарному строению науки. Порой высказывается точка зрения, согласно которой они ведут к некоей всеобъемлющей и унифицированной науке будущего. "При этом,– справедливо отмечает П. Н. Федосеев,– упрощенно толкуется афоризм К.Маркса об одной науке будущего. Вся совокупность теоретических соображений и вся исследовательская практика К.Маркса, Ф.Энгельса свидетельствуют о том, что речь идет не о замене всех наук одной наукой, а об общности методологических основ научных понятий и неизбежности их прогрессирующего органического синтеза."[2].

     Действительно, как мы видели, взаимодействие наук осуществляется не "вообще", а в связи с изучением конкретных практических и научных проблем и ведет к образованию новых блоков, комплексов общественно-научного, естественнонаучного и технического знания. За этим взаимодействием, следовательно, стоят процессы не только интеграции, но и дифференциации научного знания, появления новых исследовательских областей и направлений.

     Можно, таким образом, утверждать, что усиливающаяся взаимосвязь наук никоим образом не совпадает с ликвидацией выработанной в ходе многовекового развития науки дисциплинарной формы организации научной деятельности, тем более что сама эта форма обладает достаточной гибкостью для того, чтобы не только существовать, но и быть эффективной в новых, быстро меняющихся условиях.

     Не отменяя сложившейся структуры научного знания, усиливающееся взаимодействие общественных, естественных и технических наук оказывает все более заметное воздействие как на методологию научного познания, так и на организацию научных исследований.

     Комплексность – важнейшая черта современной науки, необходимейшее условие для того, чтобы точно и полно отобразить исследуемый объект, охватить все его стороны одновременно, в их взаимосвязи. В современной науке изучаемый объект рассматривается, как правило, не с точки зрения отдельных, относительно обособленных его сторон, а именно как единое целое. Здесь требуется единство анализа и синтеза. Значит, все науки без исключения, изучая какой-либо объект с разных сторон, должны все время исходить из его целостности, учитывать нераздельность и взаимовлияние всех его аспектов и проявлений.

     Один из важных и показательных результатов усиливающегося взаимодействия наук – возникновение и распространение в современном познании широких научных подходов и методов (кибернетики, теории информации, системного исследования и т. д.), которые находят применение в самых разных сферах науки, при изучении объектов самого различного содержания. Дальнейшее развитие таких научных подходов и методов, введение их в повседневный обиход – еще один путь к укреплению взаимосвязи общественных, естественных и технических наук.

Задачи и проблемы взаимодействия наук на примере биологии и физики.

    

     В познании свойств живой материи в последнее время все большую и большую роль играют химия и физика. В конце XIX века развитие органической химии привело к возникновению биохимии, которая сформировалась в самостоятельную науку, достигшую в настоящее время высокого уровня развития.

     Труднее проникала в биологию физика. Еще в прошлом столетии, по мере развития физики, делались многочисленные попытки использовать ее методы и теории для изучения и понимания природы биологических явлений. При этом на живые ткани и клетки смотрели как на физические системы и не учитывали того, что основную определяющую роль в этих системак играет химия. Именно поэтому попытки подойти к биологическим объектам с чисто физических позиций носили наивный характер.

     Основным методом этого направления являлись поиски аналогий.

     Биологические явления, сходные внешне с явлениями чисто физическими, трактовались, соответственно, как физические. Например эффект мышечного сокращения объясняли пьезоэлектрическим механизмом на основании того, что при наложении потенциала на кристаллы происходило изменение их длины. На рост клеток смотрели как на явление, вполне аналогичное росту кристаллов. Клеточное деление рассматривали как явление, обусловленное лишь поверхностно активными свойствами наружных слоев протоплазмы. Амебоидное движение клеток рассматривали как результат изменения их поверхностного натяжения и, соответственно, моделировали движением ртутной капли и растворе кислоты.

     Даже значительно позже, в двадцатых годах нашего столетия, детально рассматривали и изучали модель нервного проведения, так называемую модель Лилли, представлявшую собой железную проволоку, которая погружалась в раствор кислоты и покрывалась при этом пленкой окиси. При нанесении на поверхность царапины окись разрушалась, а затем восстанавливалась, но одновременно разрушалась в соседнем участке и т.д. Другими словами, получилось распространение волны разрушения и восстановления, очень похожее на распространение волны электроотрицательности при раздражении нерва.

     Возникновение квантовой теории привело к попытке объяснить действие лучистой энергии на биологические объекты с позиций статической физики. Появилась формальная теория, которая объясняла лучевое поражение как результат случайных попаданий кванта (или ядерной частицы) в особо уязвимые клеточные структуры. При этом совершенно упускались из виду те конкретные фотохимические и последующие химические процессы, которые определяют развитие лучевого поражения во времени.

     Еще недавно на основании формального сходства закономерностей электропроводности живых тканей и электропроводности полупроводников пытались применить теорию полупроводников для объяснения структурных особенностей целых клеток.

     В настоящее время разрабатываются модели, которые в какой-то мере воспроизводят поведение целых живых организмов. Так были созданы электронная мышь и электронная черепаха. Они действительно выполняют некоторые акты, присущие живым организмам. Но механизмы, лежащие в основе их работы, отличны от механизмов процессов жизнедеятельности. Познавательное значение подобных моделей для биофизики ограничено.

     В общем, надо отметить, что направление, базирующееся на моделях и аналогиях, хотя и может привлечь к работе весьма совершенный математический аппарат, вряд ли приблизит биологов к пониманию сущности биологических процессов. Попытки использования чисто физических представлений для понимания жизненных явлений и природы живой материи дали большое количество спекулятивных теорий и ясно показали, что прямой путь физики в биологию не продуктивен, так как живые организмы стоят несравненно ближе к химическим системам, чем к физическим .

     Значительно более плодотворным оказалось внедрение физики в химию. Применение физических представлений сыграло большую роль в понимании механизмов химических процессов. Возникновение физической химии сыграло в химии революционную роль. На основе тесного контакта физики и химии возникли современная химическая кинетика и химия полимеров. Некоторые разделы физической химии, в. которых физика получила доминирующее значение, стали называться химической физикой.

     Необходимость возникновения физической химии и химической физики диктовалась тем, что к концу XIXв. химия накопила огромный фактический материал. Стали известны десятки тысяч разнообразных соединений и поэтому возникла необходимость установить общие закономерности, которые показали бы связь строения молекул с их реактивной способностью. Такую связь можно установить только при помощи физики.

Именно с возникновением физической химии связано развитие биофизики. Многие важные для биологии представления пришли в нее из физической химии. Например, появление в физической химии теории растворов и установление факта, что соли в водных растворах распадаются на ионы, привело к представлению о важной роли ионов в основных процессах жизнедеятельности.

     Было установлено, что в явлениях возбуждения и проведения решающая роль принадлежит именно ионам. Так возникли ионные теории возбуждения, разработанные Нернстом и П.П.Лазаревым.

     С успехами коллоидной химии связаны исследования, в которых было показано, что в основе повреждения протоплазмы различными факторами лежит коагуляция биоколлоидов. В связи с возникновением учения о полимерах коллоидная химия протоплазмы переросла в биофизику полимеров и, особенно, полиэлектролитов.

Появление химической кинетики также вызвало появление аналогичного направления в биологии. Еще Аррениус  – один из основателей химической кинетики, показал, что общие закономерности химической кинетики применимы к изучению кинетических закономерностей в живых организмах ик отдельным биохимическим реакциям.

     Успехи применения физической и коллоидной химии при объяснении ряда биологических явлений нашли отражение и в медицине. Была выявлена роль ионных и коллоидных явлений в воспалительном процессе. Физико-химическую интерпретацию получили закономерности клеточной проницаемости и ее изменений при патологических процессах. Таким образом открылась новая глава патологии – физико-химическая патология.

     Новое направление в биологии, базирующееся на физике и физической химии, стали называть физико-химической биологией, биологической физико-химией, биофизической химией. Позже все эти термины были объединены одним термином – биофизика. По существу биофизика – это физическая химия и химическая физика биологических систем.

      Характерной чертой биофизики, отличающей ее от биохимии, является то, что она рассматривает целостные системы, не разлагая их по возможности на отдельные химические компоненты Биофизик всегда должен иметь в виду, что элементарные жизненные процессы протекают в сложных высокополимерных комплексах. При выделении же в чистом виде отдельных компонентов утрачиваются, как правило, важнейшие свойства живого. Нормально функционировать биополимеры способны только в условиях ненарушенной живой системы. Поэтому перед биофизикой встает задача получения информации о физико-химическом строении клетки и ее биополимеров именно в таком виде, в котором они существуют при жизни. Получение же сведений от живой функционирующей системы требует применения таких физических методов и в таких условиях, при которых они сами не вносят каких-либо изменений в исследуемую систему. Между тем многие применяемые в экспериментальной биологии воздействия производят в живых системах необратимые изменения. Например, изменения температуры, различные растворители, соли, кислоты и т.п. приводят к разрушению высокополимерных комплексов, хотя внешняя форма клетки и ее органоидов при этом может сохраняться.

     О нарушении жизненных процессов можно прежде всего судить по изменению физических параметров, характерных для живых клеток. При всех вышеупомянутых воздействиях клетки теряют например, способность к поляризации. Это говорит о том, что физико-химические свойства, характерные для живой клетки, существенно меняются при повреждении. Кроме того, при различных воздействиях на клетку могут возникать и артефакты – образовываться структуры и соединения, которых нет в неповрежденных клетках. В зтом отношении критического подхода требует, например, электронная микроскопия, являющаяся мощным познавательным средством для биологии. С ее помощыо цитология и вирусология сильно расширили свои горизонты. Однако, когда при помощи только электронной микроскопии пытаются вскрыть детали тонкого молекулярного строения живого вещества, исследователи иногда сталкиваются с артефактами, что может приводить к ошибочным выводам.

     Большая сложность и высокая лабильность живых объектов ставит биофизика в трудные условия и вынуждает его перерабатывать физические методы, создавая специализированные биофизические методы и приемы. Стремление изучать по возможности  ненарушенную или лишь минимально измененную живую систему вынуждает биофизиков пользоваться очень слабыми источниками излучения при исследовании оптических свойств клеток, слабыми электрическими токами при измерении электрических параметров и т.п. Поэтому же в своих исследованиях биофизики должны широко использовать усилительную технику.

     За последнее время четко выявился ряд теоретических и практических проблем, которые могут и должны решаться именно биофизикой. Биофизика занимается, в первую очередь, вопросами размена энергии в биологическом субстрате, исследованием роли субмикроскопических и физико-химических структур в жизнедеятельности клеток и тканей, возникновением возбуждения и происхождением биоэлектрических потенциалов, вопросами авторегулирования физико-химических процессов в живых организмах. Конкретные задачи современной биофизики весьма разнообразны.

     Одна из основных задач биофизики – выявление физических и физико-химических параметров, характерных для живых объектов. Известно, что характерным свойством живых клеток является наличие электрического потенциала между клеткой и окружающей средой; способность удерживать ионный градиент по калию и натрию между клеткой и средой; способность поляризовать электрический ток. При гибели живого объекта эти свойства исчезают. В зафиксированных гистологических препаратах выявляются надмолекулярные структуры, отсутствующие в живых неповрежденных клетках. В то же время тонкие молекулярные структуры клетки, обеспечивающие ее основные прижизненные свойства, оказываются нарушенными. Поэтому именно вопрос о выявлении истинных молекулярных структур и определение прижизненных физико-химических параметров биологических объектов приобретает огромное значение.

     Одним из важнейших направлений биофизики является изучение биологического действия ионизирующих излучений. Эта проблема разносторонне изучается различными дисциплинами (физиологией, биохимией, патологией и др.), но самая существенная роль отводится здесь биофизике. Важнейшим моментом в действии лучистой энергии на биологический субстрат является первичный переход физической энергии, поглощенной биологическим субстратом, в хнмическую энергию и развитие первичных химических реакций. При этом происходит образование высокоактивных радикалов и ионов, которые и служат центрами первичных реакций. Первичный выход активных химических продуктов определяет все дальнейшее развитие лучевого поражения. Поэтому в настоящее время первостепенное значение приобретает исследование химической природы первичных радикалов и кинетики радикальных реакций. Отсюда вытекает и важная задача торможения радиационно-химических реакций различными ингибиторами природного происхождения.

     Ослабление радиационного эффекта – вполне реальная задача. При введении в организм перед облучением некоторых веществ-ингибиторов осуществляется так называемая химическая защита. Биофизика выявляет физико-химические свойства молекул веществ-ингибиторов и на основе общих принципов дает методы

подбора необходимых соединений.

     Вопрос размена и передачи энергии при фотохимических процессах стоит в основе другой важной биофизической проблемы – проблемы механизма фотосинтеза. С этой проблемой связан также еще один принципиальный для биофизики вопрос: вопрос о возможности миграции энергии и о механизме такой миграции. Есть основания полагать, что химическая реакция при фотосинтезе протекает не в том месте, где осуществляется первичный процесс взаимодействия квантов света с веществом, а на некотором расстоянии , т.е. там, куда переносится поглощенная энергия.

     В таком же аспекте изучаются биофизикой первичные механизмы , лежащие в основе зрительного акта, исследуются продукты фотохимических реакций, происходящих при поглощении энергии света пигментами зрительных рецепторов.

     Следующим важным направлением биофизики является исследование проницаемости клеток и тканей. Физико-химическая биология уже давно занимается выявлением закономерностей проникновения вещества в живые клетки. Это практически важный вопрос, так как с проницаемостью связано фармакологическое :действие лекарственных веществ и токсическое действие различных ядов. Проникновение веществ в клетки зависит в первую очередь от физико-химических свойств молекул, их растворимости, их электрических свойств – распределения зарядов. Биофизика должна установить коррелятивную связь между этими свойствами ващества и его способностью проникать в клетки. С другой стороны , проницаемость связана со способностью поверхностных клеточных мембран пропускать те или иные вещества. Поэтому биофизика изучает и физико-химические свойства биологических мембран и способы повышения или понижения проницаемости действием различных агентов. Последнее имеет большое значение для лечебных мероприятий, для применения ядовитых инсектицидов в сельском хозяйстве, при дезинфекции и т. п.

     Протоплазма клеток состоит из высокополимерных веществ, в основном полиэлектролитов, и обладает свойствами, присущими этому классу соединений. Углубленные исследования в этой области открывают новые возможности для изучения свойств протоплазмы. В частности, в настоящее время уже удалось значительно приблизиться к пониманию вопроса об избирательном поглощении калия живыми клетками.

     Изучение физико-химических превращений биополимеров в клетке тесно связано с выявлением механизма возникновения возбуждения и биоэлектрических потенциалов как в недифференцированных клетках, так и в специализированных нервных и мышечных элементах. Физиология уже давно использует биоэлектрические потенциалы для оценки физиологических и патологических состояний организма. Перед биофизикой стоит другая большая задача – выявить физико-химические причины появления и развития биоэлектрических потенциалов, определить их энергетические источники и этим открыть путь для более глубокого анализа физико-химического состояния клеток в норме и патологии.

     Биофизика вместе с другими дисциплинами принимает сейчас участие в расшифровке важнейших вопросов о физико-химических механизмах передачи наследственных свойств и изучает механизмы, определяющие устойчивость вида и его изменчивость. При этом анализируются те силы, которые вызывают деление и расхождение хромосом, физико-химические основы взаимодействия нуклеиновых кислот, физико-химическая природа гена и т.д.

Страницы: 1, 2, 3, 4


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.