рефераты скачать

МЕНЮ


Курсовая работа: Проектирование лифта

—  5 – i-я характеристика системы имеет определяющее значение для достижения поставленной цели;

—  4 – i-я характеристика системы имеет большое значение;

—  3 – i-я характеристика системы имеет достаточно важное значение;

—  2 – i-ю характеристику системы желательно учесть;

—  1 – i-я характеристика системы является несущественной для выполнения задачи.

Выбор наилучшего решения производится определением взвешенной суммы. Наилучший вариант имеет большую сумму:

S = ∑ лi∙qi                                                                              (3.2)

Для системы АД с переключением числа параметры полюсов и коробкой передач взвешенная сумма:

S = 5∙2+5∙2+4∙3+5∙4+5∙2+5∙5+3∙4+4∙4+4∙5+5∙3+4∙5 = 170

Для системы АИН – АД взвешенная сумма:

S = 5∙5+5∙5+4∙3+5∙4+5∙5+5∙3+3∙2+4∙3+4∙5+5∙5+4∙4 = 201

Для системы УВ – ДПТ взвешенная сумма:

S = 5∙5+5∙5+4∙4+5∙5+5∙5+5∙4+3∙3+4∙4+4∙4+5∙5+4∙4 = 221

Система УВ – ДПТ имеет наибольшую взвешенную сумму. Таким образом, система УВ – ДПТ подлежит дальнейшему расчёту.


4. Расчёт силового электропривода

4.1 Расчёт параметров и выбор двигателя

Расчёт мощности двигателя по нагреву сводится к определению наибольшей температуры перегрева его изоляции Тmax и сравнению её с допустимой Тдоп:

Тдоп >= Тmax                                                                           (4.1)

Этот метод для практических расчётов либо затруднён из-за сложности построения кривой нагрева двигателя, либо вообще невозможен, что характерно для предварительного этапа выбора двигателя. Поэтому на практике применяют метод средних потерь, считая его относительно точным. Однако в данном случае по причине не знания токов, протекающих по якорной цепи двигателя, использовать этот метод не представляется возможным. В процессе работы постоянные потери двигателя изменяются только при переходе и работе на пониженной скорости. А так как работа на пониженной скорости происходит на малом временном интервале по сравнению с работой на рабочей скорости, то изменением постоянных потерь можно пренебречь. Сопротивления привода и обмотки возбуждения двигателя в течении цикла работы остаются неизменными. Поэтому, принимая во внимания выше принятые допущения, вместо метода средних потерь для оценки нагрева можно использовать метод эквивалентного тока.

Оба последних метода можно использовать для проверки двигателя по нагреву, но для предварительного выбора двигателя ими пользоваться нельзя. Поэтому для предварительного выбора двигателя применим метод эквивалентного момента. Общее выражение метода эквивалентного момента определяется как:


                           ∑ Мi2 ∙ ti

Мн >= Мэ = ----------------------------                               (4.2)

                     вп∙tп + вт∙tт + во∙tо + tр

Для обеспечения требуемого технологического режима лифта необходимо выбрать двигатель с достаточно большим пусковым моментом, частыми пусками и реверсами. Такие характеристики имеют двигатели краново-металлургической серии номинального режима S3.

Согласно методу экспертных оценок наилучшими технико-экономическими показателями обладает система УВ-ДПТ. Поэтому по заданным критериям будем выбирать двигатель серии Д. Двигатели этой серии имеют независимую вентиляцию, в связи с чем все коэффициенты ухудшения охлаждения будут иметь значение равное 1-це. Расчёт эквивалентного момента проводим для повторно-кратковременного режима работы.

В соответствие с тахограммой и нагрузочной диаграммой подставляем в выражение (4.2) статических нагрузок и соответствующие им промежутки времени, а также приняв в равным 1-це, получим:

        Мс22 ∙ (tр + tуст + tт1 + tп + tт2)

Мэ= ------------------------------------                                  (4.3)

                    Тц - tост

Определим эквивалентную мощность:

Рэ = k ∙ Мэ ст ∙ wн дв,                                                      (4.5)

где wн дв – номинальная скорость двигателя, рад/с.

Рэ = k ∙ Мэ ст ∙ wн дв = 1,1 ∙ 285 ∙ 68 = 21318 Вт                    (4.6)

Выбираем двигатель из условия:


Рн дв >= Рэ = 21318 Вт                                                  (4.7)

Двигатель, выбранный по условию (4.7), приведен в таблице 4.1.

Таблица 4.1 – Технические данные выбранного двигателя

Тип

Двигателя

Рн,

кВт

Iн,

А

n

об/мин

Мmax

Н∙м

В

J

кг∙м2

Д806 22 116 650 981 220 1

Проверим выбранный двигатель по перегрузочной способности, т.е. должно соблюдаться условие:

Мдв max >= Мс max,                                                (4.8)

где Мдв max – максимальное значение момента, которое способен развить двигатель, Н∙м;

Мс max – максимальное значение момента нагрузки в течение рабочего цикла, Н∙м.

Выбранный двигатель в течение 10 с может работать с нагрузкой, втрое превышающую номинальную, т.е. Мдв max = 3∙Мн. Номинальный момент двигателя найдём из выражения:

        Рн       22000

Мн = – =     ––––– = 324 Н∙м                                                         (4.9)

       wн             68

Получаем: Мдв max = 3 ∙ 324 = 972 Н∙м. Максимальное значение момента нагрузки при работе лифт режиме «Подъём кабины без груза»: Мс2 = 294 Н∙м, на основании чего можно сделать заключение о выполнении условия (4.8).

Проверим выбранный двигатель по условиям пуска:


Мдв п >= Мс п,                                                                        (4.10)

где Мдв п – значение пускового момента двигателя, Н∙м;

Мс п – статический момент нагрузки на валу двигателя во время пуска, Н∙м.

Пусковой момент двигателя равен Мп = Мдв max=3∙324 = 972 Н∙м. Статический момент нагрузки на валу двигателя во время пуска Мс п = Мс2 = 294 Н∙м. Значит, выбранный двигатель удовлетворяет условиям пуска.

Так как работает в достаточно тяжёлом режиме, характеризующимся частыми пусками, остановами, изменением направления вращения, то возникает необходимость проверить двигатель по допустимому числу включений в час. Согласно паспортным данным двигатель имеет допустимое число включений в час – 2000. Рабочий механизм за цикл работы (Тц = 8 с) требует останова 1 раз. Тогда реальное число включений в час составит:

       1               1

N = – ∙ 3600 = – ∙ 3600 = 450                                               (4.11)

      Тц              8

Из выражения (4.11) видно, что максимальное число включений двигателя в час 450 раз. Исходя из этого приходим к выводу, что выбранный двигатель обеспечивает требуемое рабочим механизмом число включений в час.

Зная момент инерции двигателя, определим момент инерции первой массы по формуле (1.15):

J1 = Jдв + Jвр + Jпр,

где Jдв – момент инерции двигателя, кг∙м2;

Jвр – приведенный к валу двигателя суммарный момент инерции вращающихся частей, кг∙м2;

Jпр – приведенный к валу двигателя момент инерции противовеса, кг∙м2.

Подставляя численные значения, получаем:

J1 = Jдв + Jвр + Jпр = 1 + 0,25 + 1,7 = 2,95 кг∙м2

4.2 Расчёт параметров и выбор силового преобразователя

В соответствие с методом экспертных оценок в качестве выбранной системы электропривода лифта используем двигатель постоянного тока с управляемым выпрямителем. Регулирование скорости (т.е. переход на пониженную скорость) осуществляем изменением напряжения, подводимого к якорю двигателя.

Согласно условиям технологического режима в процессе работы необходимо изменять направление вращения двигателя лифта, то устанавливаем реверсивный привод. Кроме изменения направления вращения двигателя лифта, это даст возможность осуществлять торможение путём рекуперации энергии в сеть, т.е. использовать самый экономичный способ электрического торможения. Для уменьшения мощности силового оборудования выбираем управляемый выпрямитель с трёхфазной мостовой схемой. Выбор тиристорного преобразователя должен производиться по следующим критериям:

Iн >= Iн дв; Udн > Uн дв.

Согласно вышеприведенным условиям, выбираем тиристорный преобразователь, входящий в состав комплектного тиристорного электропривода серии КТЭУ и имеет следующие номинальные параметры:

—  Iн = 200 А;

—  Udн = 230 В.


5. Расчёт статических механических и электромеханических характеристик привода

Рассчитаем номинальные параметры двигателя.

По причине отсутствия в справочных данных на двигатель сопротивлений Rя, Rдп, Rко оп-ределим суммарное сопротивление якоря в нагретом состоянии из условия, что в ДПТ с независимым возбуждением переменные потери приблизительно составляют 50% от полных потерь:

тахограмма электропривод сопротивление

                         Uн

Rя∑ = в ∙ (1-зн) ∙ –                                                                  (5.1)

                         Iн

Номинальное КПД определим следующим образом:

зн = Рн / (Uн ∙ Iн) =22000 / (220 ∙ 116) = 0,86                      (5.2)

По (5.1) определим сопротивление якоря:

                         Uн                                    220

Rя∑ = в ∙ (1-зн) ∙ – = 0,5 ∙ (1 – 0,86) ∙ –     = 0,13 Ом            (5.3)

                          Iн                                     116

Номинальная угловая скорость:

wн = (р ∙ nн) / 30 = (р ∙ 650) / 30 = 68 рад/с                                   (5.4)

Определим момент номинальный на валу двигателя:

Mн = Рн / wн = 22000 / 68 = 324 Н ∙ м                       (5.5)


Номинальный коэффициент ЭДС двигателя:

      Uн – Iн ∙ Rя∑  220 – 116 ∙ 0,13

Сe = ––––––––– = ––––––––––––– = 3,01 В∙с / рад           (5.6)

              wн                            68

Найдём коэффициент связи между Мн и током якоря Iн:

См = Мн / Iн = 324 / 116 = 2,79 В ∙ с / рад                          (5.7)

Естественная статическая механическая характеристика имеет вид:

      Uн          Rя∑

w = –––  M ∙ ––––        ––                                  (5.8)

       Ce          Ce∙См

Так как механическая характеристика привода отличается от механической характеристики двигателя, то перейдём к построению характеристики привода. Общий вид статической механической характеристики системы УВ – ДПТ в режиме непрерывных токов следующий:

       Edo ∙ cosб – ДUв             Rо

w = –––––––––––––––  M ∙ –         –––––                                                        (5.9)

                 Ce                          Ce∙См

Из выражения (5.9) видно, что для построения статической механической характеристики привода в режиме непрерывных токов необходимо определить максимальное выпрямленное напряжение на выходе УВ, угол управления тиристорами б для обеспечения различных скоростей для различных статических моментов и суммарное сопротивлении привода с учётом сопротивления коммутации Rк.

Определим какое значение пониженного напряжения нужно обдавать на якорь двигателя для получения рабочей скорости при различных загрузках.

                                Rя∑

Uk = wр ∙ Ce + Мk ∙ –––––

                                 Cм

В результате подстановки численных значений и вычислений получили следующие характеристики:

—  при Мс пр1 = 147 Н∙м для wр=56,8 рад/с: U1 = 178 В;

—  при Мс пр2 = 294 Н∙м для wр=56,8 рад/с: U2 = 185 В;

—  при Мс пр3 = 205 Н∙м для wр=56,8 рад/с: U3 = 180,5 В;

—  при Мс пр4 = 210 Н∙м для wр=56,8 рад/с: U4 = 180,7 В.

Из расчетов видно, что максимальное напряжение нужно подавать при работе с момент статическим Мс пр2 = 294 Н∙м. Так как выбранный двигатель имеет номинальное напряжение 220В, то для исключения работы управляемого выпрямителя в зарегулированном режиме устанавливаем на входе преобразователя согласующий трансформатор. По этому режиму и будем рассчитывать выбирать трансформатор.

Найдём максимальное выпрямленное напряжение на выходе УВ:

Edo = kз ∙ U2 = 1,1 ∙ 185 = 203,5 В                    (5.10)

где kз – коэффициент запаса по напряжению.

Определим предварительное значение напряжения на вторичной обмотке трансформатора:


                     Edo                    203,5

U2л = –––––––––––––––– = –––––––––––––––– = 150,6 В

       √2 ∙ (m/р) ∙ sin (р/m)       √2 ∙ (6/р) ∙ sin (р/6)

Ток при максимальной загрузке распределителя определим следующим образом:

I2 = Мс2 / См = 294 / 2,79 = 105,4 А                            (5.11)

Ток вторичной обмотки:

I2т = √2/3 ∙ I2 ∙ ki = √2/3 ∙ 105,4 ∙ 1,1 = 95 А                         (5.12)

где I2 – ток при максимальной загрузке распределителя, А;

ki – коэффициент непрямоугольности тока.

Исходя из следующих условий выбираем трансформатор:

U2л н >= U2л = 150,6 В; I2т н >= I2т = 95 А.

Номинальные данные выбранного трансформатора представлены в таблице 5.1.

Таблица 5.1 – Номинальные данные выбранного трансформатора

Тип

Трансформатора

Номинальныая
мощность, кВ ∙ А

U1л н,
В

U2л н,
В

I2т н,
А

Ркз,
Вт

Uкз,
%

ТСП-63/0,7 – УХЛ4 58 380 205 164 1900 5,5

Активное сопротивление фазы трансформатора:

       Pкз                1900

Rт = –––––– = –––––––––––– = 0,0235 Ом                        (5.13)

      m ∙ I22т н         3 ∙ 1642


Полное сопротивление фазы трансформатора:

zт = (U2ф н / I2т н) ∙ (Uк / 100),                              (5.14)

где U2ф н – номинальное фазное значение напряжения вторичной обмотки, В.

U2ф н = U2л н / √3 = 205 / √3 = 118,4 В                         (5.15)

zт = (U2ф н / I2т н) ∙ (Uк / 100) = (118,4 / 164) ∙ (5,5/ 100) = 0,04 Ом         (5.16)

Индуктивное сопротивление фазы трансформатора:

XL = √ zт2 – Rт2 = √ 0,042 – 0,02352 = 0,032 Ом          (5.17)

Индуктивность фазы трансформатора:

Lт = XL / (2 ∙ р ∙ f) = 0,032 / (2 ∙ 3,14 ∙ 50) = 0,0001 Гн = 0,1 мГн         (5.18)

С учётом выбора трансформатора определим максимальное выпрямленное напряжение на выходе УВ:

Edo = √2 ∙ U2л ∙ (m/р) ∙ sin (р/m) = √2 ∙205 ∙ (6/р) ∙ sin (р/6) = 276,8 В (5.19)

Находим суммарное сопротивление привода:

Ro = Rя∑ + 2 Rт + Rком + Rсд                                       (5.20)

Сопротивление коммутации определим как:


                    m ∙ XL          6 ∙ 0,032

Rком = –––––––––––– = –––––––– = 0,03 Ом                     (5.21)

                   2 ∙ р                 2 ∙ р

Для выявления необходимости установки дросселя с целью ограничения пульсаций тока на коллекторе определим реальный уровень пульсаций тока на коллекторе по следующему выражению:

         ee ∙ Edo

ie = ––––––––––––––––––     ,                                     (5.22)

         Iн ∙ wo ∙ (Lя + 2∙Lт)

где ee – коэффициент (для мостовых схем принимается равным 0,24).

Индуктивность обмотки якоря определим из формулы Ленвиля-Уманского:

           г ∙ Uн            0,25 ∙ 220

Lя = ––––––––– = –––––––––––––– = 0,0035 Гн               (5.23)

         Iн ∙ wо ∙ p∙      116 ∙ 68 ∙ 2

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.