рефераты скачать

МЕНЮ


Способы и методы повышения несущей способности ледяного покрова

Рис 6. Кривые прогибов ледяного покрова в зависимости от скорости движения χ и массы груза P. Глубина водоема H=5,6 м.

Рис.7. Прогибы льда толщиной h=0,38 м на разных глубинах при движении груза P=14 м; 2-H=6,3 м; 3-H=5,6 м

Одновременно с этим резко возрастают прогиб под грузом и длина волны. Максимального значения прогиб достигает при определенной (критической), скорости VP, начи­нал с которой дальнейшее увеличение скорости груза приводит к уменьшению прогибов. Как видно из рисунка 6 - 7, для разных глу­бин относительные значения критических скоростей (в рассматриваемых случаях  стремятся к единице.

Запись величин прогибов ледяного покрова при движении груза неизменной массы, но при различной глубине водоема, показала, что на больших глубинах прогибы всегда меньше соответствующих прогибов при меньших глубинах (рисунок 8). Отличия величины и формы про­гибов могут быть объяснены влиянием мелководья на распространение гравитационных волн в жидкости.

Рис.8. Не установившееся колебания ледяного покрова при движении нагрузки со скоростью χ

Из рисунка 9, на котором приведены экспериментальные кривые прогибов льда для покоящегося и движущегося с различными скоро­стями грузов, видно, что как только груз начинает двигаться по ледяно­му покрову с некоторой скоростью, прогибы под грузом уменьшаются по сравнению с прогибами при статическом нагружении. Этот результат совпадает с натурными наблюдениями, описанными в работах [23, 29], и не подтверждает известных теоретических выводов для абсолютно упругих пластин.

 

Рис.9.Кривые прогибов ледяного покрова от неподвижной и движущихся нагрузок.

Некоторое увеличение несущей способности ледяного покрова при движении груза, масса которого была предельной при ста­тическом нагружении, отмечается в работе [43], в работе [44] приведе­ны записи неустановившихся колебаний ледяного покрова при движе­нии грузов со сверхкритическими скоростями (рисунке 10). Колебания льда записывались на пути следования груза. При этом прибор № 1 за­писывал более ранние неустановившиеся колебания, а прибор № 3 со­ответственно - более поздние. Из рисунка видно, что при неустановив­шейся скорости нагрузки, превышающей критическую, и влиянии сво­бодных колебаний ледяного покрова в последнем возникает интерфе­ренция, могущая привести к появлению волн значительной амплитуды. Однако по мере стабилизации процесса максимальные прогибы и высо­та волны перед грузом становятся меньше (см. кривую, записанную прибором № 3).

 

Рис.10. Неустановившиеся колебания ледяного покрова при движении нагрузки со скоростью χ=1,27

На рисунке 10 также представлена серия аналогичных кривых колебаний ледяного покрова, записанных при скорости движения груза 16,7 м/с. Большая скорость, естественно, сокращает время распространения неустановившихся колебаний, поэтому те же приборы, находившиеся на тех же расстояниях от начальной точки движения груза, записали более стабильные колебания ледяного покрова. Последний по ходу движения прибор № 3 записал практически установившиеся колебания.

В этом случае деформированная поверхность ледяного покрова не имеет положитель­ных прогибов, т.е. выпуклость ледяного покрова обращена вверх. Тео­ретические исследования плоских колебаний ледяного покрова, выпол­ненные С.С. Голушкевичем [21] и Д.Е. Хейсиным [40], приводят к ана­логичным результатам.

Экспериментальному изучению вынужденных колебаний длинной плавающей пластины, генерирующей в жидкости систему "нагонных" волн, посвящена работа Ю.В. Писарева [45]. Ее автором выявлена ана­логия между "нагонными" и корабельными волнами. Установлены зату­хающий характер вынужденных колебаний пластины, зависимость ам­плитуды волны от массы движущегося груза и глубины воды. При дви­жении груза по пластине со скоростью V > VP так же, как и в исследова­ниях других авторов, наблюдалось уменьшение прогибов в пластине.

В.Н. Смирновым проводились эксперименты по исследованию распространения волн в ледяном покрове с целью определения физико-механических свойств льда [46, 47] . В работе [47] показан характер процесса распространения изгибных волн и разработана методика опре­деления групповой скорости волн по диспергирующим цугам. Получен­ные экспериментальные данные хорошо согласуются с теоретическими выводами работы [40].

Из-за большой трудоемкости натурных исследований колебаний ледяного покрова, сложности инструментальных замеров прогибов и напряжений в бесконечной ледяной пластине экспериментаторы часто обращаются к модельным экспериментам. При этом для простоты мо­делирования изучаются плоские колебания пластин, т.е. балок-полосок. Подобная задача о влиянии движущейся нагрузки на НДС бесконечной балка, лежащей на упругом основании, рассмотрена Х.Е. Крайнером [48]. Поставленная в работе задача решалась с помощью электрическо­го моделирующего устройства, разработанного на основе аналоговых методов.

При моделировании изучалось равномерное и неравномерное движение возмущающей силы с учетом затухания колебаний. В резуль­тате исследований автором была получена серия графиков, позволяю­щих выявить характер влияния некоторых параметров движущейся на­грузки и основания на НДС бесконечной балки, лежащей на упругом основании. На рисунке 11 представлены кривые прогибов и мо­ментов в зависимости от безразмерной скорости V и безразмерного ко­эффициента затухания D. При возрастании скорости движения нагрузки точка приложения силы перемещается к узлу волны. Это заметно при увеличении коэффициента затухания. Одновременно частота волны пе­ред нагрузкой увеличивается, а позади - уменьшается. С увеличением скорости движения нагрузки изменяется место возникновения неболь­ших напряжений.

Рис.11.Прогибы пластины в зависимости от скоростей нагрузки  и коэффициента затухания D: a) D=0,20;  б)D=1,0


При докритических скоростях наибольшие изгибающие моменты возникают под нагрузкой. В случаях сверхкритических скоростей пик моментов располагается впереди нагрузки. Большое сходство результа­тов модельных экспериментов с записями натурных колебаний ледяного покрова позволяют использовать выводы работы при анализе тео­ретических решений. Л.В. Гольдом изучались колебания ледяного по­крова, вызванные движущимися нагрузками, с помощью датчиков дав­ления, закрепляемых на границе раздела "лед-вода". Эксперимен­ты показали, что при скорости нагрузки в диапазоне  0 < v < vp лед имел симметричный прогиб. По мере приближения скорости нагрузки к кри­тическому значению прогибы льда становились все более несимметрич­ными. Было также замечено, что максимальные напряжения во льду возникают при скоростях, несколько превышающих критические. В ра­боте, [48] приводятся результаты модельных испытаний арктического СВП SK-5 над ледяным модельным покровом.

Большой объем экспериментальных и теоретических работ по исследованию распространения ИГВ в сплошном ледяном покрове позволяет представить ясную картину происходящих при этом физических процессов. При действии на лед движущейся нагрузки в ледяном покрове в зависимости от скорости будут возникать либо только изгибные, либо только гравитационные, либо колебания обоих видов. Если изгибной волне в пластине сопутствует гравитационная волна в воде, то такую комбинацию волн называют изгибно-гравитационной волной. Прогрессивные ИГВ не могут распространяться со скоростью, меньшей некоторой критической величины Vp, зависящей от глубины водоема, толщины льда и его физико-механических свойств.

Если нагрузка движется со скоростью V < Vp, то прогрессивные ИГВ не возникают. Форма прогиба льда при этом подобна статической и несколько вытянута в направлении движения. При движении нагрузки со скоростью V > Vp будет возникать две системы затухающих волн. Вперед будут уходить изгибные волны с групповой скоростью U1 > V, а позади будут распространяться гравитационные волны с групповой скоростью U2 < V [1]. Если V= VP возникает резонанс, т.е. прогибы льда позади нагрузки сильно возрастают.

При возбуждении волн в сплошном ледяном покрове движущейся нагрузкой под критической или резонансной понимают скорость нагрузки, равную скорости распространения ИГВ. При такой скорости движение нагрузки сопровождается интенсивной подкачкой энергии в колеблющуюся систему, что вызывает увеличение прогибов льда.

Явление возрастания амплитуды ИГВ при таком режиме движения принято называть изгибно-гравитационным резонансом. На мелководье Vp равна фазовой скорости распространения гравитационных волн на поверхности чистой воды Vo с увеличением глубины в зависимости от параметров льда и вида нагрузки критическая скорость может быть меньше, равной или превосходить значение V0. В зависимости от соотношения, Vp и Vo физические процессы, сопровождающие колебания ледяного покрова, несколько отличаются. Общим будет оставаться сам характер деформации льда.

Размеры существующих СВП и интересующие нас параметры льда позволяют считать действие нагрузки от движущегося с резонансной скоростью СВП аналогичным действию сосредоточенной силы, перемещающейся с такой же скоростью. Поэтому физические процессы, происходящие при генерации СВП ИГВ, в соответствии с теоретическими исследованиями, будут определяться одним из трех возможных в практике случаев.

1. Vp > Vo. В начальный момент движения нагрузки прогиб льда уменьшается по сравнению со статическим. Интенсивность отпора воды по знаку совпадает со знаком интенсивности при статическом действии нагрузки. При VVp амплитуда прогибов льда растет, а интенсивность уменьшается. Когда V = Vo, интенсивность отпора обратится в нуль, т.е. архимедовы силы будут полностью уравновешиваться гидродинамическими усилиями. Вода перестает поддерживать ледяной покров, равновесие которого достигается только за счет упругих усилий, возникающих в ледяном покрове. В интервале скоростей V0<V<Vp интенсивность сил отпора воды имеет обратный знак. Таким образом, внутренние упругие силы, действующие в ледяном покрове, должны уравновесить не только приложенную нагрузку, но и добавочное давление, создаваемое инерцией воды. При скоростях, близких к: верхней границе рассматриваемого интервала, амплитуды колебаний льда резко возрастают. Случай, когда V = Vp, рассматривают как резонансный. Наконец, когда скорость нагрузки превзойдет критическую, V > Vp интенсивность отпора опять изменит знак, и вода вновь будет поддерживать ледяной покров. Амплитуды прогибов льда при дальнейшем росте скорости будут асимптотически стремиться к нулю.

2.Vp < Vo. По мере увеличения от нуля скорости движения нагрузки V возрастает интенсивность отпора воды, и одновременно растет амплитуда прогибов. При VVp амплитуда прогибов и интенсивность сил  отпора значительно  возрастают (резонанс).  В интервале скоростей Vp < V < Vo интенсивность сил отпора меняет знак.  С последующим ростом скорости VV() величина сил поддержания уменьшается и, переходя через нуль (при V = Vo), меняет знак на противоположный. По мере дальнейшего роста скорости амплитуда прогибов ледяного покрова неограниченно уменьшается.

3. Vp = Vo. В этом случае знак интенсивности отпора воды не будет меняться, т.е. вода будет всегда поддерживать ледяной покров. Резонанс наступает в момент, когда V = Vo. При сверхкритических скоростях движения нагрузки возникает одиночная волна изгиба, амплитуда которой по мере роста скорости стремится к нулю.

Таким образом, несмотря на то, что плавающий неограниченный ледяной покров и неограниченная поверхность чистой воды имеют бесконечный спектр частот, условия равновесия ледяной пластины позволяют из этого спектра выделить критическую частоту, являющуюся собственной частотой колебаний системы «лед-вода».

Анализ физических процессов, происходящих при распространении ИГВ в ледяном покрове, показывает, что максимальные прогибы и напряжения во льду возникают при скоростях движения нагрузки, близких к Vp. Поэтому случай V= Vp является расчетным при определении НДС ледяного покрова при действии на него нагрузки.

Рассмотренные физические явления характерны для установившегося процесса, т.е. спустя некоторое время после начала действия подвижной нагрузки. В начальный период значительную роль могут играть свободные колебания ледяного покрова.


Глава II. Выбор наиболее эффективных способов повышения несущей способности ледяного покрова

2.1. Результаты информационно-патентного поиска

В условиях северных регионов страны замерзающих рек со слабо развитой транспортной системой часто приходиться использовать ледяной покров в качестве автозимников и ледовых переправ. При недостаточной  толщине льда и не очень низких температур использовать для этих целей ледяной покров затруднительно из-за недостаточной несущей способности. Это часто приводит к гибели автотранспорта или др. транспортных средств, в частности при аварийном использовании ледяного покрова в качестве для посадочных полос для самолетов.

Существующие методы и устройства для повышения   прочности льда являются дорогостоющими и требуют больших  трудозатрат (на льду сооружают специальные настилы из бревен что придает дополнительный вес и лед расслабляется (релаксация), а также уменьшается теплоизоляционные свойства), упрочняют лед путем полива, очищают поверхность  льда от снега).

Для устранения известных недостатков этих способов и устройств на основе проделанного информационно-патентного поиска могут быть предложены следующие решения.


2.2. Классификация методов повышения несущей способности ледяного покрова.

2.2.1.Уменьшение температурного градиента:

2.2.1. Задачей заявляемого метода является создание ледяной платформы с такой грузонесущей способностью, которая будет обеспечивать безопасность движения по ней транспорта и надежные условия складирования грузов.

Это достигается повышением цилиндрической жесткости ледяной пластины D, которая в свою очередь зависит от толщины ледяного покрова σ [49].

Существенные признаки: Под воздействием низких температур (t<0 0C) в месте выработки траншеи (высотой h, шириной В) и после выработки сквозных отверстий 4 при полном замерзании воды 2  общая толщина ледяной грузонесущей платформы увеличиться,  и станет равной σ = H1+ h, что приведет к увеличению ее цилиндрической жесткости D [Патент РФ № 2144967].

Где может использоваться: При создании платформы предназначенной для движения транспорта или хранения грузов на ледяной поверхности любой гидросистемы в зимний период времени или в районах Земли с круглогодичной температурой ниже 0 0С.


2.2.2. В данном методе используется компрессор 4, который через трубы 3 в отверстия 2 в ледяном покрове 1 закачивает холодный (t<00C) атмосферный воздух, тем самым понижает температуру ледяного покрова, что приведет к увеличению прочности льда и исчезновению воздушных полостей подо льдом, что приведет к   интенсивному увеличению прироста толщины льда. Тем самым несущая способность ледяного покрова повыситься [Патент РФ № 2170790].

Где может использоваться: При создании платформы предназначенной для движения транспорта на ледяной поверхности любой гидросистемы в районах Земли с перепадами температуры по толщине ледяного покрова от  0 0С на нижней кромке до температуры окружающего воздуха на верхней кромке льда.

2.2.2.1. Данный метод является усовершенствованным по сравнению с 2.2.2. т.к. для увеличения несущей способности ледяного покрова используется ребра жесткости 4, которые образуют замкнутые по периметру области 5. После закачивания воздуха 7 в отверстия 6, воздух  заполняет образованные области 5, тем самым повышает интенсивность нароста толщины ледяного покрова 1 [Патент РФ № 2161673].

Где может использоваться: При создании ледяной грузонесущей платформы предназначенной для хранения грузов на ледяной поверхности любой гидросистемы в районах Земли с перепадами температуры по толщине ледяного покрова от  0 0С на нижней кромке до температуры окружающего воздуха на верхней кромке льда.


 2.2.2.2. Данный метод является усовершенствованным по сравнению с 2.2.2.1. т.к. для увеличения несущей способности ледяного покрова в образовавшиеся области 5 закачивается  воздух вместе с переохлажденным легким, мелкодисперсным, обладающим теплоизоляционными свойствами материал, например древесные опилки, что приводит к более интенсивному увеличению прочности нижнего слоя ледяного покрова 1 и соответственно к повышению несущей способности всей ледяной платформы [Патент РФ № 2193621].

Где может использоваться: При создании ледяной платформы  повышенной грузонесущей способности предназначенной для хранения грузов на ледяной поверхности любого акватория в районах Земли с перепадами температуры по толщине ледяного покрова от  0 0С на нижней кромке до температуры окружающего воздуха на верхней кромке льда.


2.2.3. Данный метод позволяет увеличить прочность нижних слоев льда посредствам помещения теплоизоляционного материала 3 через прорезь 2  и закреплении его вмораживанием кромки материала 4. После помещения такого материала произойдет уменьшение перепада температуры на верхней и нижней его поверхностях [5], тем самым температура нижнего слоя льда понизиться. Это увеличит прочность льда, а если  материал изготовлен из непроницаемой для воды ткани и есть расстояние между льдом и материалом, то это приведет к интенсивному наросту толщины льда [Патент РФ № 2149945].

Где может использоваться: При создании платформы предназначенной для движения транспорта на ледяной поверхности акватория с подледным течением в районах Земли в зимний период времени.


2.2.Армирование

2.2.1. Данный метод решает задачу уменьшения прогибов льда, возникающих в ледяном покрове при действии на него внешних нагрузок при использовании ребер жесткости 3 образованных в  результате выработки канавок 2 и действия  низких температур [Патент РФ № 2141610].


2.2.1.2. Данный метод является усовершенствованным по сравнению с 5.2.1. т.к. ребра жесткости 3 создаются путем вмораживания в ледяной покров стальных труб 5, что тем самым убирает необходимость очистки  канавок 2 от снега и образовывает не только ребра  жесткости  под ледяным покровом, но и над ним, тем самым более эффективно повышает  грузонесущею способность ледяной платформы [Патент РФ № 2171335].

Где могут использоваться: При создании ледяной грузонесущей платформы  предназначенной для хранения грузов на ледяной поверхности любой гидросистемы в районах Земли в зимний период времени с температурой ниже 00С.


2.2.3. Данный метод предлагает для создания безопасной переправы использовать стальные тросы 3, которые укладываются в ледяном покрове 1 по обеим сторонам от оси переправы в канавки 2 глубиной меньшей толщины льда и для предотвращения их утраты закрепляют концы троса на берегах 4 с помощью креплений 5. Тем самым нижний слой льда в составе ледяной переправы подвергается армированию, что приведет к возрастанию грузоподъемности последней [10]. Затем в канавках 2 сверлят сквозные отверстия 6 и после заполнения  водой 7 и полного ее замерзания переправа готова к эксплуатации [Патент РФ № 2132898].

Где может использоваться: При создании ледяной переправы предназначенной для движения транспорта  на речных акваториях   в районах Земли в зимний период времени с температурой ниже 00С.

2.3. Применение свай

 

2.3.1. В  данном методе ледяную переправу создают посредством возведения на ледяном покрове 1 надстройки образованной посредством погружения в сквозные отверстия 3 стальных труб 4 с заваренным придонным концом. Трубы опускают на дно акватория, таким образом, чтоб их верхний не заваренный конец выступал над ледяной поверхностью. После воздействия отрицательной температуры на стальных трубах происходит интенсивное намерзание льда 6 [5] необходимой толщины h, для создания ледяных опор необходимых для создания надежной переправы 2. [ Патент РФ № 2135685]

2.3.2. Данный метод является усовершенствованным по сравнению с 2.3.1. т.к. он заключается в интенсивном уменьшении прогибов льда, возникающих в ледяном покрове 1 при движении по нему грузов за счет формирования под ледяным покровом ледяных опор (свай) 9 и водяных столбов 10, заключенные в замкнутые объемы, имеющие свойство не сжимаемости [8], которые будут вести себя при реальных нагрузках от транспортируемых по льду грузов, как абсолютно жесткие конструкции, что приведет к созданию безопасной переправы [Патент РФ №  2164975].

Где могут использоваться: При создании ледяной переправы предназначенной для движения транспорта и транспортировки грузов на акваториях без подледного течения в районах Земли в зимний период времени с температурой ниже 00С.

Страницы: 1, 2, 3, 4, 5


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.