рефераты скачать

МЕНЮ


Синхронные машины. Машины постоянного тока

Внешней характеристикой (рис. 2.47, б) называют зависимость U==f(Iн) при n = const и Iв = const. В режиме нагрузки напряжение генератора


,                                                        (2.67)


где ∑r – сумма сопротивлений всех обмоток, включенных последовательно в цепь якоря (якоря, добавочных полюсов и компенсационной).

С увеличением нагрузки напряжение U уменьшается по двум причинам:

а) из-за падения напряжения во внутреннем сопротивлении ∑r машины;

б) из-за уменьшения э.д.с. Е в результате размагничивающего действия реакции якоря.

Изменение напряжения при переходе от режима номинальной нагрузки к режиму холостого хода


.               .                            (2.68)


Для генераторов с независимым возбуждением оно составляет 5–15%.

Регулировочной характеристикой (рис. 2.47, в) называют зависимость Iв = f(Iн) при U = const и n = const. Она показывает, каким образом следует регулировать ток возбуждения, чтобы поддержать постоянным напряжение генератора при изменении нагрузки. Очевидно, что в этом случае по мере роста нагрузки нужно увеличивать ток возбуждения.

Нагрузочной характеристикой (рис. 2.48, а) называют зависимость U=f(Iв) при n = const и Iн = const. Нагрузочная характеристика при Iн = Iном (кривая 2) проходит ниже характеристики холостого хода (кривая 1), которую можно рассматривать как частный случай нагрузочной характеристики при Iн = 0. Разность ординат кривых 1 и 2 обусловлена размагничивающим действием реакции якоря и падением напряжения во внутреннем сопротивлении ∑r машины. Наглядное представление о влиянии этих факторов дает характеристический, или реактивный, треугольник ABC (рис. 2.48, а). Если к отрезку аА, равному в определенном масштабе напряжению U при некотором токе нагрузки Iн, и некотором токе возбуждения Iв, прибавить отрезок АВ, равный в том же масштабе падению напряжения Iar в генераторе, то получим отрезок аВ, равный э.д.с. Е. При холостом ходе такая э.д.с. индуктируется в обмотке якоря при меньшем токе I'в, соответствующем абсциссе точки С. Следовательно, отрезок ВС характеризует размагничивающее действие реакции якоря в масштабе тока возбуждения. При неизменном токе Iн катет АВ характеристического треугольника является постоянным; катет ВС зависит не только от тока Iн, но и от степени насыщения магнитной системы, т.е. от тока возбуждения Iв. Однако в ряде случаев влиянием тока возбуждения пренебрегают и принимают, что отрезок ВС пропорционален только току Iн.


Рис. 2.48 – Нагрузочная характеристика генератора с независимым возбуждением (а) и ее построение с помощью реактивного треугольника (б)


Это позволяет строить нагрузочные характеристики при разных токах, изменяя лишь величину всех сторон треугольника ABC. Если вершину С характеристического треугольника, построенного для некоторого тока Iн, совместить с характеристикой 1 холостого хода (рис. 2.48, б), а затем перемещать треугольник по этой характеристике так, чтобы катет ВС оставался параллельным оси абсцисс, то след вершины А даст приближенно искомую нагрузочную характеристику 2 при заданной величине тока Iн. Эта характеристика будет несколько отличаться от реальной характеристики 3 (которая может быть снята опытным путем), так как величина катета ВС характеристического треугольника будет изменяться вследствие изменения условий насыщения. Используя характеристику холостого хода, с помощью характеристического треугольника могут быть построены и другие характеристики генератора: внешняя и регулировочная.


Рис. 2.49 – Построение внешней характеристики генератора с независимым возбуждением с помощью характеристического треугольника


Построение внешней характеристики. При построении исходят из характеристики холостого хода 1 (рис. 2.49). Взяв точку D на оси ординат, соответствующую номинальному напряжению Uном, проводят через нее прямую AD, параллельную оси абсцисс. На этой прямой располагают вершину А характеристического треугольника, снятого при номинальном токе якоря так, чтобы катет АВ был параллелен оси ординат, а вершина С находилась на характеристике 1. Затем, опустив перпендикуляр из вершины А на ось абсцисс, находят точку Ак, соответствующую номинальному току возбуждения Iв.ном.

При этом способе определения тока Iв.ном исходят из того, что под действием реакции якоря э.д.с. при нагрузке будет меньше, чем при холостом ходе, т.е. будет создаваться как бы меньшим током возбуждения. Это уменьшение тока Iв соответствует отрезку ВС, характеризующему размагничивающее действие реакции якоря. Напряжение при номинальном токе также будет меньше э.д.с. на величину падения напряжения r, которому соответствует катет АВ.

При построении искомой зависимости 2 напряжения U от тока нагрузки I = ее точки могут быть легко определены: номинальному току Iа.ном отвечает номинальное напряжение Uном (точка b), а режиму холостого хода (ток якоря равен нулю) – напряжение U0 (точка а), равное э.д.с. при токе возбуждения Iв.ном. Другие точки (с, d и т.д.) внешней характеристики можно построить, изменяя все стороны характеристического треугольника прямо пропорционально изменению тока якоря и располагая его так, чтобы катеты А'В', А «В» и т.д. оставались параллельными оси ординат. При этом точки В, В', В» и т.д. должны располагаться на вертикальной линии АкВ, соответствующей току возбуждения Iв.ном, а точки С, С', С» и т.д. на характеристике холостого хода. Тогда ординаты точек В', В» и т.д. будут определять величину напряжения при токах нагрузки Iа1= номА'В'/AB; Iа2=IаномА "В»/АВ и т.д.

Обычно при построении внешней характеристики 2 проводят только гипотенузы характеристических треугольников А'С', А «С» и т.д., параллельные АС, до пересечения с характеристикой холостого хода и с линией АкВ, соответствующей току Iв.ном. Ординаты найденных точек А', А» и т.д. дадут искомые величины напряжений (т.е. точки с, d и т.д. внешней характеристики 2), при токах нагрузки


:::···=АС:А'С':А «С»: ··.


Если из точки Ак, соответствующей Iв.иом, провести прямую, параллельную АС, до пересечения с характеристикой холостого хода в точке Ск, то получим величину тока короткого замыкания Iк = IномАкСк/АС, которая в 5–15 раз превосходит номинальный ток. Зная ток короткого замыкания, можно рассчитать максимальный момент и механическую прочность вала, выбрать аппаратуру защиты и т.д. Экспериментальное определение тока короткого замыкания затруднительно, так как в процессе проведения опыта может возникнуть круговой огонь.

Построенная характеристика является приближенной. Основная погрешность обусловлена тем, что размагничивающее действие реакции якоря (т.е. катет ВС) не пропорционально току якоря. Обычно приведенное построение дает несколько заниженное значение напряжения, а также тока короткого замыкания.

Построение регулировочной характеристики (рис. 2.50). Это построение начинают с того, что находят ток возбуждения, соответствующий номинальному напряжению при холостом ходе. Чтобы определить ток возбуждения при номинальном токе нагрузки, вершину А характеристического треугольника (соответствующего номинальной нагрузке) располагают на прямой 2, параллельной оси абсцисс и находящейся от нее на расстоянии Uном. Катет АВ должен быть параллелен оси ординат, а вершина С должна располагаться на характеристике холостого хода 1. Абсцисса вершины А дает искомую величину тока возбуждения. Доказательство справедливости этого построения дано при построении внешней характеристики.

Проводя прямые, параллельные гипотенузе АС, получим отрезки А'С', А «С», А' «С'» и т.д., заключенные между характеристикой холостого хода 1 и прямой 2, соответствующей условию U = Uном = const. Эти отрезки представляют собой гипотенузы характеристических треугольников при других токах нагрузки. Искомая регулировочная характеристика Iв = f() – кривая 3 – построена в нижнем координатном углу. Значения тока возбуждения определяются абсциссами точек А, А', А» и т.д., которым соответствуют токи нагрузки, пропорциональные длинам отрезков АС, А'С', А «С» и т.д.



Рис. 2.50 – Построение регулировочной характеристики с помощью характеристического треугольника


Рис. 2.51 – Принципиальная схема генератора с параллельным возбуждением


Достоинствами генераторов с независимым возбуждением являются возможность регулирования напряжения в широких пределах от нуля до Uмакс путем изменения тока возбуждения и сравнительно малое изменение напряжения генератора под нагрузкой. Однако такие генераторы требуют наличия внешнего источника постоянного тока для – питания обмотки возбуждения.

Генератор с параллельным возбуждением. В этом генераторе (рис. 2.51) обмотка возбуждения присоединена через регулировочный реостат параллельно нагрузке. Следовательно, в машине используется принцип самовозбуждения, при котором обмотка возбуждения получает питание непосредственно от самого генератора. Самовозбуждение генератора возможно только при выполнении определенных условий. Чтобы установить их, рассмотрим процесс изменения тока в контуре «обмотка возбуждения – якорь» при режиме холостого хода. Для рассматриваемого контура можно написать уравнение

e = iBRB + LBdiB/dt,                                     (2.69)


где е и iв–мгновенные значения э.д.с. Е в обмотке якоря и тока возбуждения Iв; Rв = rв + rр.в–суммарное сопротивление цепи возбуждения генератора (сопротивлением ∑r можно пренебречь, так как оно значительно меньше Rв); Lв–суммарная индуктивность обмоток возбуждения и якоря.

Все члены, входящие в (2.69), могут быть изображены графически. На рис. 2.52 показаны зависимость e = f(iв), представляющая собой характеристику холостого хода генератора ОА, и вольт-амперная характеристика сопротивления его цепи возбуждения iвRв = = f(iв). Последняя представляет собой прямую ОВ, проходящую через начало координат под углом у к оси абсцисс; при этом tgγ=Rв. Из (2.69) имеем

diB/dt=(e-iBRB)/LB.                                                  (2.70)


Следовательно, если имеется положительная разность iвrв), то производная diв/dt > 0 и происходит процесс увеличения тока возбуждения iв. Установившийся режим в цепи обмотки возбуждения будет иметь место при diв/dt = 0, т.е. в точке С пересечения характеристики холостого хода с прямой 0В. В этом режиме машина будет работать с некоторым установившимся током возбуждения Iв0 и э.д.с. Е0= U0.

Из уравнения (2.70) следует, что для самовозбуждения генератора необходимо выполнение определенных условий.

1. Процесс самовозбуждения в генераторе может начаться только в том случае, если в начальный момент (iв = 0) в обмотке якоря индуктируется некоторая начальная э.д.с. енач. Такая э.д.с. может быть создана потоком остаточного магнетизма. Поэтому для начала процесса самовозбуждения генератора необходимо, чтобы в машине имелся поток остаточного магнетизма, который при вращении якоря индуктирует в его обмотке э.д.с. Еост. Обычно поток остаточного магнетизма имеется в машине из-за наличия гистерезиса в ее магнитной системе. Если такой поток отсутствует, то его создают, пропуская через обмотку возбуждения ток от постороннего источника.

2. При прохождении тока iв по обмотке возбуждения ее м. д. с. Fв должна быть направлена согласно с м. д. с. остаточного магнетизма Fост. В этом случае под действием разности еiвRв происходит процесс нарастания тока iв, магнитного потока возбуждения Фв и э.д.с. е. Если указанные м. д. с. направлены встречно, то м. д. с. обмотки возбуждения создает поток, направленный против потока остаточного магнетизма, машина размагничивается, и процесс самовозбуждения не сможет начаться.

3. Положительная разность еiвRв, необходимая для возрастания тока возбуждения iв от нуля до установившегося значения Iв0, может иметь место только в том случае, если в указанном диапазоне изменения тока iв прямая ОВ располагается ниже характеристики холостого хода ОА.


Рис. 2.52 – Характер изменения э.д.с. и тока возбуждения генератора в процессе самовозбуждения

При увеличении сопротивления цепи возбуждения Rв возрастает угол наклона у прямой ОВ к оси тока Iв и при некотором критическом значении этого угла γкр (соответствующем критическому значению сопротивления Rв.кр) прямая ОВ практически совпадет с прямолинейной частью характеристики холостого хода. В этом случае е ≈ iвRв и процесс самовозбуждения становится невозможным. Следовательно, для самовозбуждения генератора необходимо, чтобы сопротивление цепи возбуждения было меньше критического значения.

Если параметры цепи возбуждения подобраны так, что Rв<.Rв.кр, то в точке С обеспечивается устойчивость режима самовозбуждения. При случайном уменьшении тока iв ниже установившегося значения Iв0 или увеличении его свыше Iв0 возникает соответственно положительная или отрицательная разность iвRв), стремящаяся изменить ток iв так, чтобы он снова стал равным Iв0. Однако при Rв> Rв.кр устойчивость режима самовозбуждения нарушается. Если в процессе работы генератора увеличить сопротивление цепи возбуждения Rв до величины, большей Rв.кр, то машина размагничивается и ее э. д. с. уменьшается до Еост. Если же генератор начал работать при Rв > Rв.кр, то он не сможет самовозбудиться. Следовательно, условие Rв < Rв.кр ограничивает возможный диапазон регулирования тока возбуждения генератора, а следовательно, и его напряжения. Обычно уменьшать напряжение генератора путем увеличения сопротивления Rв можно лишь до (0,6 ÷ 0,7) Uном.

Внешняя характеристика генератора представляет собой зависимость U = f(Iв) при n = const и Rв = const (рис. 2.53, кривая 1). Она располагается ниже внешней характеристики генератора с независимым возбуждением (кривая 2). Объясняется это тем, что в рассматриваемом генераторе кроме двух причин, вызщающих уменьшение напряжения с ростом нагрузки (падения напряжения в якоре и размагничивающего действия реакции якоря), существует еще третья причина – уменьшение тока возбуждения Iв = U/Rв, который зависит от напряжения U, т.е. от тока Iн.

Рис. 2.53. Внешняя характеристика генераторов с независимым и параллельным возбуждением


Особенно наглядно видно действие причин, уменьшающих напряжение генератора при увеличении тока нагрузки, из рассмотрения рис. 2.54, на котором показано построение внешней характеристики по характеристике холостого хода и характеристическому треугольнику.

Построение производится в следующем порядке. Через точку D на оси ординат, соответствующую номинальному напряжению, проводят прямую, параллельную оси абсцисс.

На этой прямой располагают вершину А характеристического треугольника; катет АВ должен быть параллелен оси ординат, а вершина С должна лежать на характеристике холостого хода 1. Через начало координат и вершину А проводят прямую 2 до пересечения с характеристикой холостого хода; эта прямая является вольт-амперной характеристикой сопротивления цепи обмотки возбуждения. Ордината точки пересечения Е характеристик 1 и 2 даст напряжение генератора U0 при холостом ходе.



Рис. 2.54 – Построение внешней характеристики генератора с параллельным возбуждением с помощью характеристического треугольника


Произведенное построение справедливо, так как:

а) ток возбуждения при номинальном режиме Iв.ном = Uном/ Rв соответствует абсциссе точки А;

б) э. д. с. генератора при номинальной нагрузке Еном = Uном + ном∑r соответствует ординате точки В;

в) э. д. с. Еном можно определить по характеристике холостого хода, если взять ток возбуждения, который меньше Iв.ном на величину отрезка ВС, учитывающего размагничивающее действие реакции якоря.

При построении внешней характеристики 3, ее точки а и b, соответствующие холостому ходу и номинальной нагрузке, определяются величинами напряжений U0 и Uном. Промежуточные точки получают, проводя прямые А'С', А «С» и т.д., параллельные гипотенузе АС, до пересечения с вольт-амперной характеристикой 2 в точках А', А» и т.д., а также с характеристикой холостого хода 1 в точках С', С» и т.д. Ординаты точек А', А» и т.д. будут соответствовать напряжениям при токах нагрузки 1, Iа2 и т.д., величины которых определяются из соотношения Iаном:1: 2:… = АС: А'С': А «С»:…

Изменение напряжения генератора при переходе от режима номинальной нагрузки к режиму холостого хода составляет 10–20%, т.е. больше, чем в генераторе с независимым возбуждением.

При коротком замыкании якоря ток Iк генератора с параллельным возбуждением сравнительно мал, так как в этом режиме напряжение и ток возбуждения равны нулю. Следовательно, ток короткого замыкания создается только э. д. с. от остаточного магнетизма и составляет (0,4 – 0,8) Iном. Генератор может быть нагружен только до некоторого максимального тока Iкр. При дальнейшем снижении сопротивления нагрузки rн ток Iн ≈ U/rн начинает уменьшаться, так как U падает быстрее, чем уменьшается rн. Работа на участке ab внешней характеристики (см. рис. 10–53) неустойчива; в этом случае машина переходит в режим работы, соответствующий точке b, т.е. в режим короткого замыкания.

Регулировочная и нагрузочная характеристики генератора с параллельным возбуждением имеют такой же характер, как для генератора с независимым возбуждением.

Генератор с последовательным возбуждением. В генераторе с последовательным возбуждением (рис. 2.55, а) ток возбуждения Iв = Iа = Iн. Внешняя характеристика генератора (рис. 2.55, б, кривая 1) может быть построена по характеристике холостого хода (кривая 2) и реактивному треугольнику ABC, стороны которого увеличиваются пропорционально току Iн.


Рис. 2.55 – Схема генератора с последовательным возбуждением и его внешняя характеристика


При токах, меньших Iкр, с увеличением тока нагрузки возрастает магнитный поток Ф и э. д. с. генератора Е, вследствие чего увеличивается и его напряжение U. Только при очень больших токах Iн > Iкр напряжение U с ростом нагрузки уменьшается, так как в этом случае магнитная система машины насыщается и небольшое возрастание потока Ф не может скомпенсировать увеличенное падение напряжения на внутреннем сопротивлении ∑r. Поскольку в генераторе с последовательным возбуждением напряжение сильно изменяется при изменении нагрузки, а при холостом ходе оно близко к нулю, такие генераторы непригодны для питания большинства электрических потребителей. Используют их лишь при электрическом торможении двигателей с последовательным возбуждением, которые при этом переводятся в генераторный режим.


Рис. 2.56 – Схема генератора со смешанным возбуждением и его внешние характеристики


Генератор со смешанным возбуждением. В этом генераторе (рис. 2.56, а) имеются две обмотки возбуждения: основная (параллельная) и вспомогательная (последовательная). Согласное включение двух обмоток позволяет получать приблизительно постоянное напряжение генератора при изменении нагрузки. Внешняя характеристика генератора (рис. 2.56, б) в первом приближении может быть представлена в виде суммы характеристик, создаваемых каждой из обмоток возбуждения. При включении только одной параллельной обмотки, по которой проходит ток возбуждения Iв1, напряжение генератора U постепенно уменьшается с ростом тока нагрузки Iн (кривая 1). При включении одной последовательной обмотки, по которой проходит ток возбуждения Iв2 = Iн, напряжение возрастает с увеличением тока Iн (кривая 2).

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.