рефераты скачать

МЕНЮ


Синхронные машины. Машины постоянного тока

Качество коммутации оценивается степенью искрения (классом коммутации) под сбегающим краем щетки, из-под которого выходят пластины коллектора при его вращении. Допускаемые степени искрения согласно ГОСТ 183–74 приведены в табл. 2.1.

Как видно из табл. 2.1, при длительной работе машины допускается только слабое искрение под щетками. Однако требования ГОСТа относятся только к контролю качества коммутации электрической машины при выпуске с завода.


Таблица 2.1.

Степень искрения (класс ком мутации)

Характеристика степени искрения

Состояние коллектора и щеток

1

Отсутствие искрения (темная коммутация)

1 1/4

Слабое точечное искрение под небольшой частью щетки

Отсутствие почернения на коллекторе и нагара на щетках

1 1/2

Слабое искрение под большей частью щетки

Появление следов почернения на коллекторе, легко устраняемых протиранием поверхности коллектора бензином, а также следов нагара на щетках

2

Искрение под всем краем щетки. Допускается только при кратковременных толчках нагрузки и перегрузках

Появление следов почернения на коллекторе, неустраняемых протиранием поверхности коллектора бензином, а также следов нагара на щетках

3

Значительное искрение под всем краем щетки с наличием крупных и вылетающих искр. Допускается только для моментов прямого (без реостатных ступеней) включения или реверсирования машин, если при этом коллектор и щетки остаются в состоянии, пригодном для дальнейшей работы

Значительное почернение на коллекторе, неустраняемое протиранием коллектора бензином, а также подгар и разрушение щеток


В эксплуатации может наблюдаться искрение значительно большей интенсивности, поскольку машина работает в форсированных режимах (при перегрузках или повышенной частоте вращения). Повышенное искрение щеток может вызываться и другими особенностями эксплуатации: вибрацией и ударами машины, работой на высоте более 1000 м над уровнем моря, работой в запыленных помещениях или в агрессивной среде и т.д. Поэтому технические требования, предъявляемые к разработке машин постоянного тока, должны обязательно учитывать условия их будущей эксплуатации.

Основное уравнение коммутации. При вращении якоря секции его обмотки переходят из одной параллельной ветви в другую, вследствие чего в них изменяется направление тока (рис. 2.29, а). Большую часть времени ток секции равен току параллельной ветви ia = Ia/(2a). Изменение направления тока в секции происходит за период времени Тк, в течение которого соединенные с секцией коллекторные пластины соприкасаются со щеткой (рис. 2.29, б). Время Тк, в течение которого секция оказывается замкнутой накоротко щеткой, называют периодом коммутации; секции, в которых изменяется ток, называют коммутируемыми.

Период коммутации


                                                               (2.16)


где bщ–ширина щетки; vк–окружная скорость коллектора.


Рис. 2.29 – Направление тока в параллельных ветвях обмотки якорк (а) и график изменения тока в секции (б)


В современных машинах Тк – 0,001 ÷ 0,0001с, вследствие чего средняя скорость изменения тока в секции (di/dt)cp – 2/Tк очень велика. Следовательно, в секции может индуктироваться большая э.д.с. само- и взаимоиндукции, называемая реактивной э.д.с:


,                                                       (2.17)


где Lp–результирующая индуктивность секции, определяющая величину реактивной э.д.с.

Название «реактивная» обусловлено тем, что согласно правилу Ленца эта э.д.с. препятствует изменению тока – замедляет его.

Помимо реактивной э.д.с. в коммутируемой секции индуктируется также э.д.с. вращения ек, создаваемая внешним магнитным полем и называемая коммутирующей:


,                                                       (2.18)


где Вк–индукция в воздушном зазоре, в зонах, где перемещаются коммутируемые секции.

Индукция Вк может создаваться м. д. с. главных полюсов и реакции якоря, а также м. д. с. добавочных полюсов, которые устанавливают в машинах постоянного тока с целью улучшения процесса коммутации.

Установим закон изменения тока в секции в период коммутации, полагая для простоты, что ширина щетки равна ширине коллекторной пластины. На рис. 2.30 показаны три основных этапа коммутации. В первый момент времени (рис. 2.30, а) ток i в коммутируемой секции, присоединенной к пластинам 1 и 2, равен ia и направлен от пластины 2 к пластине 1. Ток щетки 2ia проходит целиком через пластину 1, т.е. i1 = 2iα и i2= 0. В промежуточном положении (рис. 2.30, б) одна часть тока щетки 2ia проходит по-прежнему через пластину 1, а другая часть – через пластину 2, причем i1 + i2 = 2. К концу периода коммутации (рис. 2.30, в) пластина 1 выходит из-под щетки и ток, проходящий через нее, становится равным нулю. При этом ток щетки 2ia проходит через пластину 2, т.е. i2 = 2ia и i1 = 0, а ток i в коммутируемой секции изменяет свое направление по сравнению с током в начальный момент коммутации.


Рис. 2.30 – Распределение тока в коммутируемой секции в различные моменты коммутации


Для контура коммутируемой секции, замкнутой щеткой (рис. 2.30, б), можно написать уравнение


,                                            (2.19)


где i1 и i2–мгновенные значения токов, проходящих через пластины 1 и 2; i-ток в коммутируемой секции; r1 и r2–сопротивления переходного контакта между щеткой и коллекторными пластинами: сбегающей 1 и набегающей 2; rс–сопротивление секции.

Поскольку сопротивление секции всегда значительно меньше сопротивлений щеточного контакта, влияние сопротивления на процесс коммутации весьма незначительно и им можно пренебречь. Тогда из (2.19) получим


.                                                  (2.19а)


Это уравнение называют основным уравнением коммутации. Оно является нелинейным дифференциальным уравнением с переменными коэффициентами, так как э.д.с. ер пропорциональна di/dt; э.д.с. ек является функцией Вк, сопротивления rх· и r2 являются функциями времени, а также плотности тока в щеточном контакте и скорости ее изменения, т.е. зависят от тока i и его производной.

Решение уравнения (2.19а) может быть получено при различных упрощающих предположениях. Далее изложены наиболее распространенные методы решения этого уравнения.


Рис. 2.31 – График изменения тока в коммутируемой секции при идеальной прямолинейной коммутации


Коммутация сопротивлением при ширине щетки, равной ширине коллекторной пластины. Из рис. 2.30, б следует, что токи il и i2, проходящие через сбегающую и набегающую коллекторные пластины,

i1 = ia + i; i2 = ia – i                                              (2.20)


Подставляя значения i1 и i2 в уравнение (2.19а) и решая его относительно i, получим


.                                              (2.21)


Если предположить, что сопротивления r1 и r2 не зависят от плотности тока и определяются только площадями соприкосновения s1 и s2 щетки с коллекторными пластинами 1 и 2, то отношение сопротивлений


.


В этом случае уравнение (2.21) принимает вид


.                                             (2.21а)


Если подобрать ек так, чтобы в любой момент времени выполнялось условие

ev + eK = 0,                                                           (2.22)


то дифференциальное уравнение (2.21а) превращается в линейное алгебраическое уравнение

i = ia(1–2t/TK).                                                      (2.23)


Коммутацию, при которой ток i изменяется по линейному закону согласно (2.23), называют идеальной прямолинейной коммутацией (рис. 2.31).

Рассмотрим более подробно этот важный для практики случай коммутации. При идеальной прямолинейной коммутации сбегающая коллекторная пластина 1 выходит из-под щетки без разрыва тока, так как


i1 = ia + i = ia + ia(1–2t/TK) = 2ia (1 – t/TK),


и в момент времени t = Тк ток i1 = 0 (весь ток 2 проходит через пластину 2). Следовательно, под сбегающим краем щетки искрение возникать не будет. Кроме того, в рассматриваемом случае плотность тока под щеткой в местах соприкосновения ее с пластинами 1 и 2 остается все время постоянной и равной среднему значению: Δщ1 = Δща==2iа/Sщ = const. Так, например, в месте контакта щетки с коллекторной пластиной 1


.                                (2.24)


Аналогично, для коллекторной пластины 2


.                                     (2.24а)


Непосредственно плотность тока мало влияет на интенсивность искрения, однако равномерное распределение тока под щеткой способствует уменьшению потерь в щеточном контакте и поэтому считается положительным фактором.

Идеальная прямолинейная коммутация положена в основу инженерных методик расчета коммутации, предложенных рядом авторов. Главным условием этого расчета является взаимная компенсация мгновенных значений реактивной э.д.с. eр и э.д.с. ек, создаваемой внешним полем.

В рассмотренном случае при прямолинейной коммутации di/dt = const, поэтому


,                 (2.25)


т.е. реактивная э.д.с. является величиной постоянной, равной среднему значению ер.ср. Следовательно, при расчетах коммутации компенсация мгновенного значения реактивной э.д.с. сводится к компенсации среднего значения ер.ср.

Коммутация за счет э. д. с, создаваемой внешним полем. При выводе уравнения прямолинейной коммутации было принято произвольное допущение, что сопротивление щеточного контакта не зависит от плотности тока. Может быть предложена и другая методика анализа коммутации, при которой пренебрегается влиянием щеточного контакта. Действительно, проведенные эксперименты показывают, что в крупных машинах при удовлетворительной коммутации разница в падениях напряжения и1i1r1 и u2 = i2r2 в щеточном контакте составляет менее 0,5 В, в то время как э.д.с. ек превышает 3–4 В, достигая в отдельных случаях 8–10 В. Поэтому предложенное в рассматриваемой методике допущение является вполне обоснованным и основное уравнение коммутации (2.19а) может быть записано в виде

ep + eK = i1r1 – i2r2» 0.                                           (2.26)


Подставляя в уравнение (10.26) значение реактивной э.д.с. ер = – Lрdi/dt и решая его относительно i, получим


.                                                     (2.27)


Следовательно, величина и характер изменения тока i в коммутируемой секции в основном определяются коммутирующей э.д.с.

Условием безыскровой коммутации, как и в предыдущем случае, является выход сбегающей коллекторной пластины из-под щетки без разрыва тока, для чего необходимо, чтобы (i1)t=Tк = 0 или (i)t=Tк = – ia

Согласно теореме о среднем из (2.27) имеем


.                                         (2.27а)


Постоянную интегрирования С находим из начальных условий. Так как в начальный момент при t = 0 ток коммутации (i)t=0 = ia, то согласно (2.27) получим C = ia. Положив (i)t=Tк = ia, найдем условие безыскровой коммутации:


,                                 (2.28)


Откуда


.                                      (2.29)


Таким образом, для осуществления безыскровой коммутации необходима компенсация среднего значения реактивной э.д.с. в процессе коммутации. Если внешнее поле сделать постоянным, т.е. ек = ек-ср, то


.                                    (2.30)


Следовательно, в этом, практически важном, простейшем случае обе методики дают тождественные результаты.

В расчетной практике для определения среднего значения реактивной э.д.с. в секции обмотки якоря часто используют упрощенную формулу, которая может быть получена из (2.29). Для этого ток параллельной ветви ia выражают через линейную нагрузку якоря


,


а период коммутации Тк – через линейную скорость якоря va и число коллекторных пластин K:


.                              (2.31)


В последних формулах N = 2Kωc–число активных проводников обмотки якоря; Da и Dк–диаметры якоря и коллектора; K-число коллекторных пластин; ωc–число витков в секции.

В результате получим реактивную э.д.с.


.                                 (2.32)


Индуктивность секции


,                                             (2.33)

где Λр–магнитная проводимость для потоков рассеяния секции: пазового Фп; по лобовым частям Фs и дифференциального Фz (по коронкам зубцов) – рис. 2.32, а; lа – li – активная длина якоря (при расчете магнитной проводимости берется удвоенная длина якоря); λр–удельная магнитная проводимость на единицу длины секции.

Поэтому формула (2.32) принимает вид

ep = 2lawcAvaλp.                                                     (2.32а)


Удельная проводимость секции с достаточной степенью точности может быть принята равной при открытых (рис. 2.32, б) и полузакрытых (рис. 2.32, в) пазах:


,                                             (2.34)


где hп и bп – высота и средняя ширина паза; hш и bш–высота и ширина щели паза; ls – длина лобовой части секции.

Обычно значения λр = 4 ÷ 8.

На рис. 2.33, а показаны зависимости изменения тока в коммутируемой секции во времени при пренебрежении падениями напряжения i1r1 и i2r2 в щеточном контакте. Идеальной прямолинейной коммутации, т.е. условию eр.ср + ек.ср = 0, соответствует прямая 1.


Рис. 2.32 – Потоки рассеяния секции (а) и размеры паза, определяющие удельную проводимость секции (б, в)


В действительности при работе машины всегда имеются причины, вызывающие неполную компенсацию реактивной э.д.с., т.е. отклонение от условия ер.ср + ек.ср = 0. К этим причинам относятся: технологические допуски при изготовлении коллектора, установке щеткодержателей, установке добавочных полюсов и т.п.; резкие толчки тока нагрузки, перегрузки по току, превышения номинальной частоты вращения, вибрация машины и другие эксплуатационные причины; нестабильность щеточного контакта, из-за которой постоянно изменяется площадь контакта щетки с коллектором (период коммутации Тк) или происходит полный отрыв щетки от коллектора.

Если |ек.ср| < |ер.ср|, то коммутация замедляется, так как согласно правилу Ленца э.д.с. ер замедляет изменение тока i. Обозначив степень некомпенсации э.д.с. через Δ = [|ер.ср| – |ек.ср|]/ep.ср|, получим


.                                       (2.35)


При этом закон изменения тока в коммутируемой секции [см. (2.30)]


.           (2.36)


При замедленной коммутации (рис. 2.33, а, прямая 2) в момент окончания коммутации при t = Tк щетка разрывает некоторый остаточный ток iост, вследствие чего между сбегающим краем щетки и сбегающей коллекторной пластиной возникает электрическая дуга. Величина остаточного тока


,                                               (2.37)


или с учетом (2.36)


.                                                             (2.37a)


Электромагнитная энергия Wи, выделяющаяся в дуге, возникающей при разрыве остаточного тока, может характеризовать степень искрения. Для рассматриваемого простейшего случая


.                                                  (2.38)


Рис. 2.33 – Кривые изменения тока в коммутируемой секции в течение периода коммутации Тк при пренебрежении сопротивлением щеточного контакта (а) и его учете (б, в)


При ускоренной коммутации (рис. 2.33, а, прямая 3), когда |ек.ср| > |ер.ср|, ток в коммутируемой секции изменяется по закону


,                                                 (2.36а)


т.е. быстрее, чем это требуется для безыскровой работы щеток. Сбегающий край щетки и при ускоренной коммутации разрывает остаточный ток iост, а следовательно, и в этом случае будет наблюдаться искрение щетками.

Учет падения напряжения в щеточном контакте.

При построении кривых изменения тока (рис. 2.33, а) не учитывалось падение напряжения в щеточном контакте. В действительности при быстром увеличении плотности тока под сбегающим краем щетки сопротивление щеточного контакта резко возрастает, что ведет к уменьшению остаточного тока или полному его устранению, даже в том случае, когда коммутация отличается от идеальной. Типичные кривые изменения тока в коммутируемой секции с учетом влияния сопротивления щеточного контакта приведены на рис. 2.33, б. При незначительном расстройстве коммутации замедление коммутации (кривая 2) или ее ускорение (кривая 4) не приводят к разрыву сбегающим краем щетки остаточного тока. Только значительное замедление (кривая 3) или значительное ускорение (кривая 5) коммутации приводят к возникновению опасного искрения.

При замедленной коммутации уменьшение остаточного тока происходит под действием разности падений напряжений u1 и u2 (см. рис. 2.30) под сбегающим и набегающим краями щетки:


.                                     (2.39)


При ускоренной коммутации на завершающем этапе, когда ток изменяет свое направление, в уравнение (2.39) входит сумма падений напряжения


.                                                    (2.39а)


При этом к концу процесса коммутации резко уменьшается ток i1, т.е. коммутируемая секция заканчивает коммутацию с так называемой ступенью малого тока (рис. 2.33, в), при которой допустима большая разница между ер и ек. Поскольку в эксплуатации появление погрешности коммутации как в одну, как и в другую сторону (т.е. ускоренная и замедленная коммутация) равновероятно, при расчете и наладке машины предпочитают иметь слегка ускоренную коммутацию. Для того чтобы усилить благоприятные влияния падений напряжений u1 + u2 на процесс коммутации, в мощных машинах постоянного тока с затрудненной коммутацией применяют щетки с большим переходным сопротивлением, несмотря на то, что это увеличивает потери мощности в переходном контакте.

Закономерности коммутации, рассмотренные на простейшем примере, в основном сохраняются и для более сложных случаев, когда щетка перекрывает несколько коллекторных пластин и в пазу находится несколько секций. Однако имеются и некоторые отличия от простейшего случая.

Общий случай коммутации при ширине щетки, большей коллекторного деления и нескольких проводниках, лежащих в пазу. В общем случае, когда щетка 1 перекрывает несколько коллекторных пластин (рис. 2.34, а), изменение тока происходит одновременно в нескольких секциях 2, лежащих в одном или нескольких пазах. На рис. 2.34, б изображена диаграмма коммутации секций одного паза для обмотки, показанной на рис. 2.34, а. Прямоугольники 3, 4, 5 и 6 показывают распределение во времени индуктивностей Lc секций, которые приняты равными их взаимоиндуктивностям Мс. Ширина каждого прямоугольника равна периоду коммутации

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.