рефераты скачать

МЕНЮ


Розрахунок енергозберігаючих заходів


4.5.2 Підготовка котла до очистки

Котел, що підлягає очистці, підлягає ретельному огляду і складається акт його стану внутрішньої поверхні (товщина шару відкладень, корозія та інше). Особливу увагу приділяють огляду клепаних швів та вальцовочних з’єднань. При огляді із різних місць відбирають проби відкладень для хімічного дослідження складу.

Необхідно звернути увагу на забезпечення щільності комунікаційних ліній, зварних швів, фланцевих з’єднань та сальників насосів. Після огляду котла його опресовують на робочий тиск. При виявлені нещільності у швах останні підварюють. Ліквідовують також виявлені нещільності в лючках, фланцевих з’єднаннях. Із колекторів, грязевиків, барабанів та інших вузлів видаляють шлам і відпавши куски накипу.

Перед початком очистки повинна бути змонтована кислото промивочна апаратура.

Перед проведенням очистки на котлі виконують наступні роботи: відглушають частини котла, які не підлягають очистці, заглушками або дерев’яними пробками; відглушають водовказуючі колонки, знімають запобіжні клапани, а їх штуцера залишають відкритими; відглушають котел, що промивається, від інших котлів; збирають всю промивочну схему і перевіряють пробовідбірні точки, а також спускні та дренажні лінії; провіряють роботу кислото промивочного насоса на гарячій воді, після чого перекачують технічну кислоту в мірний бак.

Промивочний бак заповнюють водою, одночасно в нього вводять із мірного бака розрахункову кількість кислоти. Включають насос і перекачують в агрегат розчин, підігріваючи його до потрібної температури у виносному електричному підігрівачі. Котлоагрегат заповнюють до тих пір, поки розчин із зворотної лінії не почне поступати в промивочний бак, в якому після наповнення котла залишається 2/3 об’єму розчина.

Якщо кислота не інгібірована, замедлювач вводять разом з концентрованою кислотою в промивочний бак. Наповнення котла розчином кислоти з урахуванням приготування розчину та його нагріву не повинно перевищувати 3 години.

У випадку необхідності використання фтористих солей (для видалення силікатного накипу) останні поступово вводять в очищаємий агрегат разом з кислотним розчином. Для цього розрахункову кількість сухої фтористої солі висипають невеликими порціями вручну в промивочний бак.

При очистці хромовою кислотою, хромовим ангідридом (СrО3), який знаходиться в твердому вигляді, останній поступово розчиняють водою в промивочному баці. Для перемішування розчину вмикають насос "на себе". Після розчинення всього хромового ангідриду перекачують розчин в котел. Потім насос зупиняють, приготовляють нову порцію кислоти і, ввімкнувши насос, знову перекачують рідину в котел. Так роблять до тих пір, поки котел не буде повністю заповнено, а розчин по зворотній лінії не почне повертатися в промивочний бак. Після заповнення котла розчином кислоти насос не вимикають і циркуляцію продовжують на протязі часу, заданого для очистки поверхні котла.

Якщо розчин підігрівається паром, то під час циркуляції витрату пари регулюють з таким підрахунком, щоб температура розчину під час очистки підтримувалась на заданому рівні (50-60°С).

Концентрацію кислотного розчину під час очистки котла контролюють кожні 15-20 хвилин. Проби на аналіз беруть із пробовідбірника на всмоктуючому трубопроводі та на зворотній лінії, тобто до і після промиваємого агрегату.

Якщо кислотність робочого розчину знижується за рахунок розчинення відкладень (на протязі одної години на 2-3 % від першопочаткової), то в промивочний бачок добавляють концентровану кислоту. Очистку проводять до тих пір, поки кислотність розчину перестане суттєво змінюватись.

Якщо кислотність розчину знижується в процесі промивки незначно, це вказує на погану розчинність відкладень. В цьому випадку кислотну очистку потрібно проводити на протязі максимально допустимого часу.

Як тільки на основі перевірки контрольного зразка час перебування кислоти в котлі буде признано достатнім, відкривають дренажний вентиль. Водою витісняють розчин кислоти в дренаж до тих пір, поки із пробовідбірника на зворотній лінії вода перестане давати з метилоранжем кислу реакцію. Після цього вимикають насос, закривають засувку та спускають всю воду із котла в дренаж. Після спорожнення котла закривають дренажну засувку і приступають до обробки котла лугом.

Спуск розчину кислоти в дренаж проводять з дозволу Санепідемстанції. До спуску кислоти дренажний приямок заповнюють кусками вапняного каміння. Після спускання розчину кислоти дренажний приямок промивають водою.


4.5.3 Тепловий розрахунок котлоагрегату МЕ-4-1,4ГМ

Схема переводу котла типу МЕ-4-1,4ГМ на водогрійний режим роботи показано на рис. 4.1.

По цій схемі потік води направляється спочатку в економайзер, а потім в нижні колектори бокових екранів. Після транспортування води через екранні труби і передню частину верхнього барабана котла потік води по необігріваємому трубопроводу направляється в нижній барабан, звідки піднімається по трубам конвективного пучка.

В котлах типу МЕ-4-1,4ГМ по ходу продуктів згорання знаходиться 17 рядів труб конвективного пучка, а поперек газового потоку - 20 труб. Потік води транспортується спочатку через 160 підйомних труб, потім розвертається в верхньому барабані на 180° і опускається по восьми трубам дев’ятого ряда в нижній барабан (інші труби дев’ятого ряда видаляються, а отвори в барабанах заглушаються коротишами). Після розвороту води в нижньому барабані на 180° вода транспортується в верхній барабан по 160 трубам конвективного пучка. Із середньої частини верхнього барабана вода подається в теплову мережу.

1.Трубопровід води із теплової мережі; 2.Економайзер; 3.Колектори бокових екранів; 4.Верхній барабан; 5.Вода в теплову мережу; 6.Суцільні перегородки; 7.Нижній барабан.

Рисунок 4.1 Схема переводу котла типу МЕ-4-1,4ГМ на водогрійний режим роботи


Визначаємо теплопродуктивність котла МЕ-4-1,4ГМ на паровому режимі:


(4.11)


де D – паропродуктивність котла в номінальному режимі роботи;

iж.п - ентальпія насиченої пари (194,13 oC)

іж.в - ентальпія живильної води (100 oC)

gпр - Процент продувки котла (3%).

iкіп - Ентальпія котлової води

Визначаемо повну витрату палива (яке подається в топку)


(4.12)


де Qpp - Кількість привернутої теплоти палива 37297,26(кДж/нм3)

ηк.а. - ККД котельного агрегату;

Визначаємо теплопродуктивність котла МЕ-4-1,4ГМ, переведеного на водогрійний режим роботи, по формулі, кДж/год:


Qка = G ( I´´- I´ ) к (4.13)


де G – паропродуктивність котла в номінальному режимі роботи, 4000 кг/год;

I´´ - ентальпія насиченої пари при тиску в барабані котла 1,4 МПа.

I´´=2567,32 кДж/кг;

I´ - ентальпія живильної води при t°=70 °С. I´=294 кДж/кг;

к – коефіцієнт, який враховує збільшення теплопродуктивності котла при переведенні його на водогрійний режим, к=1,3.

Qка = 4000 (2567,32- 294) 1,3 =11821264 кДж/год

Визначаємо витрату води через котел, переведений на водогрійний режим роботи, кг/год:


G´= Qка/( Iвих - Iвх)(4.14)


де Iвх – ентальпія води на вході в котел, кДж/кг;

Iвих – ентальпія води на виході з котла Iвих=632 кДж/кг.


G´= Qка/(Iвих - Iвх)=11821264/(632-294)=34974=34,9(т/год)


Визначаемо повну витрату палива в водогрійному режимі:



де Qpp - Кількість привернутої теплоти палива 37297,26(кДж/нм3)

ηк.а. - ККД котельного агрегату;


4.6 Встановлення на котел сучасного пальника


Всі попередні роки для спалювання палива в топках ДЕ (ДЕВ), КЕ (КЕВ), ДСЕ, Е, МЕ, КВЕ котлів застосовувалися російські реєстрові пальники ГМГм, ГМ, ГМП і РГМГ. Дані пальники працюють за принципом дифузійного змішування, коли турбулізація й закручування потоку повітря досягається шляхом установки в пальники лопаткового регістра.

Практична багаторічна експлуатація пальників показала як позитивні, так і негативні особливості їхньої роботи. Приведемо деякі приклади.

- Закручування потоку повітря різко скорочує підготовчу стадію горіння (підігрів і запалення палива) і активно сприяє догоранню коксових часток. Одночасно із цим виникає значна нерівномірність розподілу теплових потоків по довжині смолоскипа. При роботі пальників ГМ максимум випромінювання розташований у головній частині топки. У міру вигоряння палива теплові потоки знижуються й наприкінці топкової камери в 2-2,5 рази нижче первісних потоків. Коефіцієнт теплової ефективності екранів на початку топки становить 0,68-0,64 при середньому значенні 0,44-0,576.

- Величина максимальних теплових потоків і їхнє місце розташування визначає вимоги до параметрів і умов роботи середовища в циркуляційному контурі котла.

- Температура в локальній зоні горіння перевищує граничний рівень (1550°С), після якого починається інтенсивне окислювання атомарного азоту. Зміст NOх у газах, що йдуть, перевищує 500 мг/м3.

- Недосконалість підведення повітря в реєстрову частину пальника приведе до значної швидкісної й видаткової нерівномірності на виході з пальника. Горіння затягається й порушується симетрія факела щодо осі котла. Коефіцієнти надлишку повітря набагато перевищують розрахункові величини, має місце торкання факелом задньої стінки котла й затягування факела в конвективний пучок.

- Для розпилення рідкого палива в реєстрових пальниках використовуються паро-механічні форсунки, що вимагає додаткової витрати пари на власні потреби. Основним недоліком паромеханічних форсунок є зміна зовнішньої форми й внутрішньої будови факела зі зміною тиску подачі палива. При незмінній епюрі розподілу швидкостей повітряного потоку зміна характеристик паливного факела приводить до якісного погіршення спалювання палива.

- Рівень автоматизації керування процесом спалювання палива обмежується тільки захисними функціями.

Російські виробники пальників останні десятиліття практично не проводили роботи з модернізації й автоматизації процесів спалювання на своїх пальниках. З початку 90-х років минулого сторіччя почалося активне просування на ринок сучасних пальників різних європейських і світових виробників. Дані пальники були призначені в основному для імпортних і російських жаротрубних котлів, і до кризи 1998 року увага європейських виробників пальників до російських водотрубних котлів було незначне.

Спроби застосування сучасних закордонних пальників на котлах Бійського котельного заводу зіштовхувалися з постійною проблемою невідповідності габаритів факела розмірам камери згоряння котла. У Європі в даний момент практично відсутнє виробництво водотрубних котлів і тому всі пальники розробляються й виробляються для роботи з надувними жаротрубними котлами.

По своїх технічних характеристиках стандартні європейські пальники є длинно факельними, і вони не можуть працювати на водотрубних котлах з короткими топками, що працюють під розрядженням.

На практичних прикладах підтвердилися теоретичні припущення, що жодний європейський пальник, створений для роботи на жаротрубних котлах, не зможе вивести водотрубний котел типу Е, ДЕ, ДКВР, МЕ на номінальну потужність.

Зміна економічної ситуації після кризи 1998 року й значне збільшення зацікавленості Замовників у купівлі звичних і доступних котлів Бійського котельного заводу зажадало від заводу Weishaupt і компанії РАЦИОНАЛ оперативних заходів щодо адаптації пальників до водотрубних котлів.

В 2000 році компанія РАЦИОНАЛ, ексклюзивний представник фірми Weishaupt у Росії, і інститут досліджень і розвитку при заводі Weishaupt затвердили нову програму по модернізації й адаптації пальників Weishaupt до котлів Бійського котельного заводу. Протягом декількох років необхідно було вирішити наступні завдання:

- Розробка, випробування й серійне виробництво нового змішувального пристрою для рівномірного розподілу факела пальників по обсязі камери згоряння в коротких топках водотрубних котлів.

- Досягнення оптимально низьких емісійних показників при спалюванні різних видів палива й стабільної автоматизованої роботи пальників у всьому діапазоні потужності водотрубних котлів.

- Впровадження з 2005 року в серійне виробництво нових пальників з коротким факелом для всіх типорозмірів котлів.

Від ідеї до впровадження в серійне виробництво (2003).

Відповідно до затвердженого підбора пальників на всі типорозміри котлів ДЕ й ДКВР, було потрібно в короткий термін впровадити в серійне виробництво 44 типи пальників Weishaupt для різних видів палива виконання SF (короткий факел). Необхідно було прискорити процес розробки, проектування й виготовлення нових змішувальних пристроїв пальників. Для цих цілей спільним рішенням заводу Weishaupt і компанії РАЦИОНАЛ у Росії була створена інженерно-конструкторська група, працювати в яку запросили провідних російських спеціалістів в області пальникових пристроїв.

Із цього моменту розробка прототипів і основних проектних рішень стали виконуватися в Росії. Це значно прискорило роботи: з'явилася можливість для кожного типорозміру пальників розробляти одночасно кілька варіантів досвідчених змішувальних пристроїв. Під кінець року їхнє виготовлення також було організовано в Росії. Роботу російських фахівців координував Інститут досліджень і розвитку заводу Weishaupt.

У середині року в котельню Бійського заводу був доставлений мазутний пальник RMS70 для випробувань на котлі ДЕ- 10-14. На даному котлі планувалося випробування декількох варіантів змішувальних пристроїв для важкого рідкого палива. Для спалювання мазуту потрібно великий топковий простір, тому від нового виконання пальників було потрібно максимально розширити смолоскип і використовувати ширину й висоту топки котла.

На випробуваннях пальників G11 і RGL11 на котлі ДЕ-6,5 у місті Кемерово були перевірені три досвідчених варіанти змішувального пристрою SF. Випробування проводилися в модульованому режимі на всіх експлуатаційних потужностях котла на газі й на дизельному паливі. У результаті був обраний пристрій 2SF, що надалі допрацьовувався для пальників типорозмірів G, GL,RL, L 7-11. Факел горіння палива при використанні пристрою 2SF, рівномірно розподіляючись по топці, не торкався стінок водотрубного котла. У результаті випробувань були досягнуті наступні показники: на газі ККД - 93%, викиди NOх - 85 мг/м3 і на дизельному паливі ККД - 91%, викиди 160 мг/м3.

2004 рік

Протягом усього року тривала цілеспрямована робота з остаточної доробки нових виконань змішувального пристрою 1SF і 2SF для короткого факела. Оскільки завдання по адаптації факела до топок водотрубних котлів було практично вирішене, основна увага приділялася рішенню завдань стабільного підпалу пальників і якісному спалюванню палива на всіх експлуатаційних режимах роботи котла з досягненням максимально можливого діапазону модульованого регулювання пальників.

У котельні Бійського заводу інженерна група з Інституту досліджень і розвитку заводу Weishaupt завершила випробування мазутного пальника RMS70 на котлі ДЕ-10. Отримано наступні результати при роботі на мазуті: З - 0-3 ррм/мз, залишковий кисень - 3, 5-4,5%, сажа - 1-3, ККД котла - 90%, діапазон регулювання - 1:7.

Бійський котельний завод видав фірмі Weishaupt і компанії РАЦИОНАЛ офіційне узгодження на застосування пальників Weishaupt з котлами (ДЕ, ДКВР і іншими котлами), був підписаний спільний Сертифікат якісної відповідності продукції Weishaupt і котлів Бійського заводу.

Переваги застосування пальників Weishaupt на котлах Бійського котельного заводу

До середини 2005 року закінчені випробування по адаптації пальників до водотрубних котлів Бійського котельного заводу. З 2005 року починається серійне виробництво пальників виконання SF для всіх основних типорозмірів котлів ДЕ й ДКВР. Робочій і інженерно конструкторській групі, що успішно виконала завдання, поставлені в програмі 2001 року, позначені наступні завдання по аналізу роботи адаптованих пальників Weishaupt, моніторингу процесів експлуатації котлів і, при необхідності, подальшій оптимізації роботи пальників на водотрубних котлах. Протягом чотирирічної спільної роботи фахівців заводу Weishaupt, компанії РАЦИОНАП і Бійського котельного заводу було проведено 38 штатних випробувань нових пальників на різних типах водотрубних котлів, розроблене й виготовлено 54 варіанта пробних змішувальних пристроїв. Бюджет витрат по цих роботах за чотири роки склав близько 1 млн. 200 тис. Євро. Накопичено значний обсяг практичних експлуатаційних результатів, які дозволяють реально відчути нижченаведені переваги застосування пальників Weishaupt у порівнянні з аналогами на котлах Бійського котельного заводу:

1. Економія енергоресурсів (паливо й електроенергія)

2.Зниження втрат тепла з газами, що йдуть, і неповнотою згоряння палива, як наслідок, збільшення ККД на 2,5-3%;

3.   Застосування систем плавного, частотного й кисневого регулювання;

4.   Збільшення діапазону регулювання (у середньому 1:7);

5.   Відсутність підтікання рідкого палива за рахунок конструктивних особливостей форсунок;

6.   Зменшення витрати пари на власні потреби (сажеобдувка, розпил рідкого палива та інше).

7.   Застосування систем мікропроцесорного регулювання;

8.   Поставка пальників із шафами керування й безпеки котла;

9.   Можливість застосування кисневого регулювання;

10.            Можливість застосування частотного регулювання двигунів пальника й димососа;

11.            Можливість передачі даних по цифрових каналах зв'язку.

12.            Максимум теплового випромінювання в топковій камері котла становить 105-110% від середнього, що істотно знижує вимоги до циркуляційного контуру котла.

13.            Рівномірний розподіл факела по всій камері згоряння котла;

14.            Збільшення міжремонтного строку експлуатації екранів топки, труб котельного пучка й економайзера в 2,5-3 рази.

Відповідність вимогам і нормам екології

-Зниження екологічно шкідливих викидів у димових газах в 1,5-2 рази, максимальне значення температури в ядрі горіння 1350-1480 °С.

Зручність обслуговування й експлуатації

- забезпечується блочністью виконання пальників, у блок входять всі елементи, необхідні для підготовки й подачі палива в зону горіння, прилади автоматичного регулювання процесом горіння й аварійного захисту.

Можливості регулювання пальників Weishaupt і керування котлами МЕ

При реалізації проектів з котлами МЕ, ДКВР, оснащеними пальниками Weishaupt, у даний момент можливе використання практично всіх найсучасніших принципів і систем регулювання процесів спалювання палива й режимів роботи котла. Додатково можуть бути вбудовані різні функції виміру, регулювання й керування котлоагрегатом:

-         Плавне модулююме регулювання потужності котла залежно від витрати пари;

-         Частотне регулювання двигунів пальників і димососів;

-         Кисневе регулювання процесів спалювання палива;

-         Керування роботою димососів котлів;

-         Керування роботою й аварійними режимами котлоагрегатів;

-         Індикація режимів роботи котлоагрегатів;


Рисунок 4.2 - Принципова сх. автоматики і пальника Weishaupt

5. ВСТАНОВЛЕННЯ ГІДРОДИНАМІЧНОГО НАГРІВАЧА НА МИЙНУ МАШИНУ ММД – 12


В локомотивному депо встановлена одна мийна машина ММД-12, яка призначена для обмивки рам візків, колісних пар інших великогабаритних вузлів рухомого складу. Для її роботи необхідний теплоносій з температурою не менш як 95оС. Теплоносій з такими параметрами відпускається з котельні локомотивного депо. Для цього необхідно в часи роботи мийної машини в зимовий період підвищувати продуктивність котла, а в літній період взагалі запускати котельню коли вона взагалі не працює. Таким чином в даному дипломному проекті запропоновано встановити гідродинамічний нагрівач УГД "Термер" який дозволить працювати мийній машині автономно незалежно від котельні, і з економити кошти.

Технічний опис установки

Гідродинамічний нагрівач УГД "Термер" об'єднує в собі три важливі властивості:

•   некритичність до режимів електроживлення (важливе дотримання лише добового споживання електроенергії);

•   простота навантаження/розвантаження електродвигуна від 15% до 120% номінальної потужності в безперервному (безступінчатому) режимі;

•можливість генерувати/споживати реактивну потужність. Системи гідравлічного нагріву відповідають необхідним умовам первинного регулювання частоти енергосистеми, зокрема — в режимі зовнішнього управління з боку диспетчера енергосистеми.

УГД "Термери" дозволяють досягати температури 95 °С у системах теплопостачання за атмосферним тиском і 250 °С в замкнутих системах, що знаходяться під надлишковим тиском.

Нагрівання рідини в генераторі відбувається шляхом перетворення механічної енергії рухомої рідини в теплову енергію з використанням ефекту об'ємної кавітації. Зона кавітації знаходиться усередині потоку, що дозволяє уникнути руйнування робочих частин і не створює шумового ефекту.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.