рефераты скачать

МЕНЮ


Реконструкция подстанции "Гежская" 110/6 кВ

6)                Ток блокировки по 2 гармонике принимается установленный заводом – 12%.

7)                Погрешность выравнивания вторичных токов расчетным путем за счет дискретности этих расчетов можно не учитывать во всем диапазоне уставок реле.

8)                Учитывая высокую точность работы микропроцессорной защиты, коэффициенты запаса при выборе уставок можно принять равными 1,2.

Выбор уставок дифзащиты трансформатора

Выбор уставок дифзащиты сводится к выбору параметров тормозной характеристики и проверки чувствительности.

          При использовании микропроцессорного реле Micom P632 появляется возможность скомпенсировать отличие вторичных токов сторон ВН и НН и угловой сдвиг, появляющейся при трансформации токов со стороны ВН(Y) и НН(∆). Расчёт общих уставок сведён в таблицу 4.2.


Таблица 4.2 Общие уставки

Наименование величины

Расчётная формула

Числовое значение для стороны

110

6

1

Напряжения обмоток, кВ

115

6,3

22

2

Первичные номинальные токи, А

31,62

551,1

3

Соединение обмоток

трансформаторов тока


Y

Y

4

Коэффициент трансформации трансформаторов тока

6,64

115,7

5

Принятый коэффициент трансформации ТТ

100/5

(20)

1000/5

(200)

6

Номинальный первичный ток ТТ, А

100

1000

7

Базисный ток, А

0,32

0,51

8

Максимальные первичные токи при скв. 3-х фазных КЗ

(повреждение на шинах 6 кВ),А

 (из расчёта токов КЗ)

396

6,89


1. Уставка первой ступени дифференциального тока (начального участка характеристики). Согласно рекомендациям завода – изготовителя:

> = 0,2

где > – ток срабатывания 1ступени, приведенный к номинальному току трансформатора.

Уставка набираемая на реле:


>=,

где  – уставка набираемая на реле;

– базисный ток стороны ВН трансформатора ( см. таблицу общих уставок).

Она может быть выполнена в пределах 0,15 – 1,5. Принимаем минимальную уставку 0,15 и получаем что она составляет: >=0,15/0,32=0,45 номинального тока трансформатора.

2. Наклон характеристики (коэффициент торможения) первого участка – участок находится в зоне малых токов – от 0 до 2.5 трансформаторов тока с малыми погрешностями, предполагается, что погрешность трансформатора тока при внешних КЗ не превышает 5%:


%


где – коэффициент запаса равен 1.2;

– погрешность трансформаторов тока, принимается для малых токов равной 5%;

– диапазон регулирования коэффициента трансформации устройством РПН– 16%.

Принимаем: 25%

3. Наклон характеристики (коэффициент торможения) второго участка– в зоне больших токов:


%,


где  – коэффициент учитывающий рост погрешности за счет апериоди-ческой составляющей. Принимается равным 1.5;

 – погрешность трансформаторов тока, принимается для больших токов равной 10%, при условии выбора трансформаторов тока по кривым 10% погрешности;

 – диапазон регулирования коэффициента трансформации устройством РПН – 16% .

Принимаем минимально возможное: 40%

4. Уставка второй ступени дифференциального тока (отсечки).

Отстройка от небаланса при внешних КЗ:


> > =А


где – ток короткого замыкания в амперах в максимальном режиме на стороне низкого напряжения с учетом имеющегося регулирования. напряжения на этой стороне;

 – коэффициент учитывающий рост погрешности за счет апериодической составляющей. Принимается равным 3.

Отстройка от броска тока намагничивания:

Полученный расчетом ток сравнивается с номинальным током силового трансформатора и, если это отношение меньше 6, то ток берется равным шестикратному номинальному току трансформатора.


> > = А


Уставка на реле:


>> = >> /


Полученный ток округляется до ближайшего большего целого числа, которое и задается в качестве уставки. Может регулироваться в пределах от 1 до 30.

5. Выбор уставки блокировки защиты током второй гармоники. Отношение тока блокировки к основному дифференциальному току. В связи с отсутствием методики для выбора принимается установленная заводом уставка:


%


Может быть отрегулировано в пределах 10 – 50%.

Способ блокировки может быть выбран (ВКЛ): пофазная блокировка, или (ВКЛ АВС): блокировка всех фаз наибольшим током второй гармоники, (ОТКЛ): блокировка отключена.

Используется заводская настройка:

БЛОК  = ВКЛ АВС

6. Выбор режима блокировки током пятой гармоники.

Способ блокировки может быть выбран (ВКЛ): пофазная блокировка, или (ВКЛ АВС): блокировка всех фаз наибольшим током второй гармоники, (ОТКЛ): блокировка отключена.

БЛОК  = ОТКЛ

7. Проверка чувствительности защиты.

В связи с тем, что уставка 1 ступени защиты при малых токах мала (уставка > составляет около 0,2 номинального тока трансформатора), в проверке чувствительности нет необходимости.

 

4.5 Противоаварийная автоматика


Микропроцессорные устройства защиты и автоматики фирмы «ALSTOM» содержит программную логическую часть, выполняющую функцию АПВ и АВР.

АПВ двукратного действия предусматриваем на отходящих фидерах напряжением не более 10 кВ согласно ПУЭ. АПВ однократного действия предусматриваем на вводах напряжением 10 кВ при раздельной работе трансформаторов [1], необходимой для автоматического восстановления их нормальной работы после аварийных отключений, несвязанных с внутренними повреждениями трансформатора.

Устройства АПВ выполнены так, что исключена возможность многократного включения на КЗ при любой неисправности в схеме устройства.

Сущность АПВ состоит в том, что элемент системы электроснабжения, отключившейся при срабатывании релейной защиты, через определенное время (0,5-1,5 с) снова включается под напряжение, если нет запрета на включение или причина отключения элемента исчезла.

При срабатывании релейной защиты на любом отходящем фидере ПС «Гежская», выключается выключатель и происходит пуск устройства АПВ, вызывая кратковременное срабатывание. После включения выключателя, АПВ отключается. Если АПВ оказывается неуспешным, то повторного включения выключателя определяется временем заряда конденсатора, который входит в состав АПВ, а при АПВ однократного действия повторного включения не происходит.

Для ускорения восстановления нормального режима работы электропередачи выдержку времени устройства АПВ принимаем минимальной.

Согласно ПУЭ устройства АВР предусматриваем для восстановления питания потребителей путем автоматического присоединения резервного источника питания при отключении рабочего источника питания, которое приводит к обесточиванию электроустановок потребителя. Устройства АВР предусматриваем для автоматического включения резервного оборудования при отключении рабочего оборудования, приводящем к нарушению нормального технологического процесса.

Устройства АВР устанавливаем на секционном выключателе. Секционный выключатель нормально отключен и включается под действием средств АВР при отключении любого трансформатора на 6,3 МВА. АВР также срабатывает при обесточивании одной из шин.

 

4.6 Составление карты селективного действия РЗиА


При согласовании защиты по времени, выдержка времени вышестоящей защиты увеличивается на ступень по сравнению с нижестоящей защитой:

 ,


где  – выдержка времени вышестоящей защиты;

 – выдержка времени нижестоящей защиты;

 – ступень селективности по времени.

Ступень селективности для Micome Р123 состовляет:  = 0,20 сек. при уставках по времени до 1с.;  = 0,30 с. при уставках по времени до 2 с.

Защита согласована по времени с защитой секционного выключателя и с защитой отходящих линий, расчетным условием является защита секционного выключателя. Согласование защит по времени занесено в таблицу 4.3.


Таблица 4.3 Согласование защит по времени

п/п

Наименование

присоединения

Тип трансформ. тока

Коэфф. трансформации

Ток уставки, А

Ток уставки, А

Время срабатывания t, с


Сторона 110 кВ     

ТФЗМ-110Б

100/5

40

2

2,3


Ввод 6 кВ

ТЛК-10-3-7

1000/5

1200

6

1,9


СМВ 6 кВ

ТЛК-10-3-7

500/5

760

7,6

1,4


Ячейка №5 (фидер 24)

ТЛК-10-3

150/5

130

4,3

1,0


Ячейка №7 (фидер 4)

ТЛК-10-3

50/5

40

3,8

1,0


Ячейка №8 (фидер 21)

ТЛК-10-3

50/5

120

3,8

1,0


Ячейка №9 (фидер 14)

ТЛК-10-3

50/5

40

2

1,0


Ячейка №12 (фидер 6)

ТЛК-10-3

100/5

45

4,4

1,0


Ячейка №13 (фидер 3)

ТЛК-10-3

50/5

90

4,2

1,0


Ячейка №16 (фидер 2)

ТЛК-10-3

50/5

45

4,3

1,0


Ячейка №19 (фидер 1)

ТЛК-10-3

150/5

195

6,1

1,0

4.7 Выводы по главе 4


Данная глава посвящена выбору и расчету релейной защиты и противоаварийной автоматики.

Для трансформаторов и линии согласно техническому заданию установили устройства релейной защиты на микропроцессорной основе. Одним из главных достоинств микропроцессорных реле защиты является осуществимость реализации целого ряда функций и характеристик. Для выборы необходимых нам микропроцессорных блоков в главе проведено сравнение нескольких видов микропроцессорных устройств. Для установки на подстанции «Гежская» предусмотрены терминалы Micom Р123 и Р632.

Micom Р123 устанавливаем по низкой стороне трансформатора и секционного выключателя. Дифференциальная защита осуществляем на терминале Micom Р632.

Особенность дифференциальной защиты трансформатора в том, что используется 2 комплекта трансформаторов тока, расположенных с обеих сторон трансформатора. Выравнивание вторичных токов по величине и по фазе производится защитой автоматически расчетным путем, при этом возникает возможность собрать трансформаторы тока со всех сторон в «звезду», что снижает нагрузку вторичных цепей.

Чувствительность защит удовлетворяет условиям ПУЭ.

Для повышения надёжности и бесперебойности работы систем электроснабжения применили противоаварийную автоматику (АПВ и АВР). Функцию АПВ и АВР выполняют микропроцессорные устройства защиты и автоматики фирмы «ALSTOM», содержащуюся в программной логической части.

Глава 5. СИСТЕМА АВТОМАТИЗАЦИИ ДИСПЕТЧЕРСКОГО УПРАВЛЕНИЯ


Внедрение систем автоматизации и диспетчерского управления на современной цифровой технике коренным образом повышает качество и надежность процессов производства, передачи и распределения электроэнергии. В настоящее время существует множество систем специально разработанных для решения задач автоматизации и диспетчерского управления.

В результате оснащения энергообьектов системами автоматизации, микропроцессорными средствами противоаварийной автоматики и релейной защиты достигается существенный экономический эффект за счет оптимизации режимов производства, передачи и распределения электроэнергии, предотвращения аварийных ситуаций и минимизации ущерба в случае их возникновения.

Следует учесть, что на подстанции применены новые типы панелей защиты и автоматики Micom, которые позволяя.n ликвидировать короткие замыкания в сети за минимальный промежуток времени с требуемой селективностью и высокой надёжностью отключения основного оборудования, а также дают возможность не только отслеживать в реальном времени показатели работы всего технологического комплекса подстанции, но и на основе принятой концепции построения системы диспетчерского и технологического управления организовывать автоматизированное рабочее место для релейного персонала, позволяющее вести единую базу данных событий с последующим ретроспективным анализом аварийных ситуаций, произошедших на данном оборудовании.

По своему принципу построения все АСУ делятся на два типа: одноуровневые и многоуровневые. Различия между двумя этими типами следующее: в одноуровневой системе вся информация с конечных устройств поступает в один компьютер и не передается дальше, в многоуровневых системах вся информация собранная одним компьютером (или несколькими ПК) передается на следующий уровень, т.е. на следующий ПК.

 

5.1 Одноуровневая и многоуровневые системы


Одноуровневая система применяется в случае, если компьютер диспетчера и конечные устройства (с которых происходит сбор информации) находятся на одном объекте и расстояние между ними не превышает 1200 м.

Многоуровневая система применяется, если:

1)                между компьютером диспетчера и конечными устройствами расстояние более 1200 м;

2)                необходимо контролировать с одного диспетчерского места несколько объектов (например, ПС, РП);

3)                необходимо обеспечить несколько диспетчерских мест;

4)                необходимость стыковки нашей системы АСУ с другой системой АСУ;

При внедрении на ПС «Гежская» микропроцессорных устройств РЗА, центральная сигнализация и телемеханика организовывается через локальную сеть и коммутируемые каналы связи (телефонная АТС, выделенный канал и т.д.). В многоуровневой системе вся информация собранная микропроцессорными устройствами РЗА поступает на шлюзовый компьютер, где она проходит первичную обработку (выделение приоритетных сигналов, создание базы данных и т.д.). После установления связи с компьютером диспетчера, установленным на расстоянии от сотен метров до десятков километров, сначала передается информация с высоким приоритетом (аварийные сигналы и срабатывания защит), а затем с более низкими приоритетами (кратковременные незначительные отклонения от нормы и текущие измерения и т.д.). После полного опроса ПС, в автоматическом режиме, компьютер диспетчера (верхнего уровня) перейдет к опросу следующей ПС.

Для выполнения любых оперативных действий (например, включить/отключить выключатель, вкатить/выкатить тележку выключателя), диспетчеру достаточно установить связь (если она не установлена) с требуемой ПС и дать команду компьютеру на выполнение конкретного действия. Все действия оператора, аварийные и текущие измерения и срабатывания защит заносятся в защищенную базу данных, которая доступна только для просмотра и анализа.

 

5.2 Система управления MicroSCADA


Для осуществления сбора, хранения, обработки и представления информации в удобном для диспетчера виде на верхнем уровне предлогаем установку SCADA производства ABB типа MicroSCADA.

MicroSCADA одна из систем разработанных для решения задач автоматизации и диспетчерского управления в энергетике.

Функции системы MicroSCADA:

1.                 Сбор и первичная обработка информации телеконтроля (ТС и ТИ) от устройств процесса;

2.                 Организация и ведение процесса оперативной базы данных (БД), обновляемой в темпе процесса;

3.                 Дополнительная обработка информации, расчеты, формирование ретроспективных отчетов и сохранение их в специальной неоперативной базе данных;

4.                 Контроль за состоянием объектов управления, формирование предупреждающих и аварийных сигналов и сообщений, управление событиями и аварийными сигналами;

5.                 Ручной ввод данных и команд управления с помощью средств человеко-машинного интерфейса;

6.                 Формирование и передача команд телеуправления устройствам процесса с предварительной проверкой возможности операций;

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.