рефераты скачать

МЕНЮ


Реконструкция подстанции "Гежская" 110/6 кВ

6.5             Предусмотреть (при необходимости) замену металлических траверс и стоек порталов 110 кВ, металлоконструкций, стоек под оборудование и контура заземления ПС. Необходимость замены определить по результатам обследования при проведении ПИР;

6.6             На стороне 6 кВ предусмотреть замену масляных выключателей ВМП-110К-1500 элегазовыми выключателями типа ВР1-10-20-630;

6.7             Принять комплектную блочную трансформаторную подстанцию КТПБР-110/6 с трансформаторами мощностью 6.3 МВА, климатического исполнения ХЛ1;

6.8             ОРУ- 110 кВ выполнить из унифицированных транспортабельных блоков, выполненных в виде металлических опорных конструкций, на которых смонтированы аппараты высокого напряжения с элементами жёсткой и гибкой ошиновки;

6.9             ЗРУ- 6 кВ выполнить в виде металлического сооружения КРПЗ-10 состоящего из отдельных транспортабельных блоков (8 штук);

6.10        Все оборудование и модули установить на стойки, фундаменты высотой 0,5 м;

6.11       Защиту всех элементов подстанции предусмотреть в объеме ПУЭ с применением микропроцессорных устройств типа Micom P632 и Р139;

6.12       На шинах 6 кВ установить 2 БСК, по 1350 кВар каждая;

6.13       Установить электронные счетчики типа ЕВРО-Альфа по учету расхода электроэнергии по 6 и 110 кВ;

6.14       На ЩУ выполнить цепи телеметрии со счетчиками для организации АСКУЭ;

6.15       Предусмотреть полный комплект противоаварийной автоматики АВР и АПВ;

6.16       Ошиновку подстанции выполнить сталеалюминевым проводом АС-70/11 (110 кВ);

6.17       Заземление на подстанции выполнить заново. В целях снижения сопротивления контура заземления, в траншею с горизонтальным заземлением засыпать глину, толщиной 0,4 м;

6.18       Установить аппаратуру телемеханики и связи в ОПУ;

6.19       Согласно техническим условиям телемеханизацию подстанции предусмотреть в следующем объёме:

- телесигнализация положения выключателей 110 кВ;

- телесигнализация положения выкл. ввода и секционного 6кВ;

- текущие телеизмерения тока на вводах 110 кВ и 6 кВ;

 - текущее телеизмерение напряжения на каждой секции шин 6 кВ.

6.20       Систему телемеханизации подстанции 110/6 кВ выполнить на аппаратуре АКП «Исеть» разработки НТК «Интерфейс» г.Екатеринбург;

6.21       Организовать передачу сигналов ТМ, ТС, ТУ, ТИ по радиоканалам.

6.22       Молниезащиту на подстанции выполнить заново;

6.23       Заземление на подстанции выполнить заново;

6.24       Предусмотреть места заземления пожарной техники на ОРУ-110 кВ.

7. Разработка демонстрационных материалов

7.1 Разработка не требуется.

8. Основные требования к технике безопасности

8.1 Выполнить в соответствии с нормами (Правила безопасности в нефтяной и газовой промышленности ПБ 08-624-03) и действующим законодательством.

9. Условия строительства

9.1 В проекте предусмотреть демонтаж и утилизацию заменяемого оборудования.

10. Особые условия проектирования

10.1 Документацию в 2-х экземплярах для проведения торгов на строительство и приобретения оборудования в составе:

- техническое задание на реконструкцию ПС;

- ведомость объемов работ;

- ведомость строительных материалов;

- ведомость оборудования;

- обзорные чертежи;

- стоимость работ, в том числе: строительных работ, электромонтажных и пусконаладочных работ.

10.2 К проекту приложить сводную спецификацию на строительные материалы и конструкции;

10.3 Рабочий проект согласовать в установленном порядке;

11. Проектная организация

11.1 Определится на конкурсной основе.

12. Строительная организация

12.1 Определится на конкурсной основе.

13. Срок выполнения проекта

13.1 Проект выполнить в 2008 году.

 

Выводы по главе 1


В данной главе были рассмотрена общая характеристика ПС 110/6 кВ «Гежская». Реконструируемая ПС 110/6 кВ «Гежская» находится в зоне Гежского месторождения нефти с высоким уровнем потребления электроэнергии.

Питание подстанции осуществляется отпайкой от ВЛ-110 кВ «Бумажная – Красновишерск» №1 и №2, которые входят в состав северного кольца.

В главе проведён анализ существующей системы электроснабжения до реконструкции, описано установленное на подстанции оборудование.

Также проведён анализ вариантов реконструкции, отмечены основные требования, предъявляемые к электрическим сетям и возможные ситуации при отказе от реконструкции.

Была поставлена задача на реконструкцию на основании технических условий и технического задания, выданных заказчиком на проект.


Глава 2. РАСЧЁТ И АНАЛИЗ РЕЖИМОВ ЭЛЕКТРОПОТРЕБЛЕНИЯ

 

2.1 Определение расчётных нагрузок потребителей ПС «Гежская» 110/6 кВ


Первым этапом проектирования системы электроснабжения является определение электрических нагрузок (ЭН). По значению электрических нагрузок выбирают или проверяют электрооборудование системы электроснабжения, определяют потери мощности и электроэнергии. От правильной оценки ожидаемых нагрузок зависят капитальные затраты на систему электроснабжения. В случае излишнего увеличения расчётных электрических нагрузок увеличиваются капитальные затраты, что приводит к неполному использованию дефицитного оборудования и проводникового материала. Эксплутационные расходы и надёжность работы электрооборудования также зависят от правильности выбора нагрузок, если в расчётах будут занижены электрические нагрузки, то величина потерь электроэнергии в электрической системе возрастает, что в конечном итоге приведёт к быстрому износу оборудования и увеличению эксплуатационных расходов.

Электрические нагрузки потребителей определяют выбор всех элементов системы электроснабжения: линий электропередачи, трансформаторных подстанций, питательных и распределительных сетей. Поэтому правильное определение электрических нагрузок является решающим фактором при реконструкции и эксплуатации электрических сетей.

При рассмотрении вопроса о реконструкции ПС «Гежская» 110/6 кВ существуют такие характерные места определения расчетных электрических нагрузок: определение общей расчетной нагрузки на шинах 6 кВ каждой секции ПС, необходимой для выбора числа и мощности трансформаторов, устанавливаемых на ПС и выбора отключающих аппаратов, устанавливаемых на стороне низшего напряжения 6 кВ трансформаторов ПС.

При определении расчетных нагрузок должны учитываться:

а) постоянное совершенствование производства (автоматизация и

механизация производственных процессов) увеличивает расход электроэнергии, потребляемой предприятием. Это обстоятельство влечет за собой рост электрических нагрузок;

б) графики нагрузок по каждому фидеру (изменяются во времени, растут и по мере совершенствования техники производства выравниваются);

в) перспективы развития производства и, следовательно, перспективный рост электрических нагрузок потребителей в ближайшие 10 лет.

Расчет электрических нагрузок различных узлов системы электроснабжения выполним, прежде всего с целью выбора сечения питающей и распределительной сетей, числа и мощности трансформаторов подстанции. Расчёт нагрузок потребителей подстанции «Гежская» произведём по суммарной поминальной мощности трансформаторов на каждом фидере шины 6 кВ. Расчёт представим в виде таблицы.


Таблица 2.1 Расчёт нагрузок потребителей ПС «Гежская» 110/6 кВ

Шины 6 кВ

кВА

Расчётная нагрузка

Обозначение и расчётная формула*

Р, кВт

Q, квар

Фидер №01

0,71/0,99

1130

802,3

794,3

103,56

144,9

Фидер №02

0,71/0,99

250

177,5

175,7

24,24

33,81

Фидер №03

0,70/1,02

519

363,0

370,6

47,56

66,83

Фидер №04

0,86/0,58

229

196,9

134,2

20,98

29,65

Фидер №06

0,80/0,75

260

208,0

176,0

25,6

35,24

Фидер №14

0,80/0,75

260

208,0

176,0

25,6

35,24

Фидер №21

0,70/1,02

700

490

499,8

64,15

89,92

Фидер №24

0,71/0,99

813

597,2

591,3

73,3

102,32

Итого:


4161

3042

2918



КУ




-2700


129,9**

Всего на шинах:


3049

3042

218



Примечание:

1) По суммарной мощности трансформаторов на КТП вычислим номинальный и рабочий максимальный токи на каждом фидере.

2) Расчёт максимального рабочего тока конденсаторной установки вычислим по следующим формулам:


Ом;

А.

 

2.2 Выбор числа и мощности силовых трансформаторов


Выбор рациональной мощности силовых трансформаторов является одной из основных задач при оптимизации систем промышленного электроснабжения. Выбор силовых трансформаторов следует осуществлять с учетом экономически целесообразного режима их работы и соответствующего обеспечения резервирования питания потребителей при отключении одного из трансформаторов. Мощность силовых трансформаторов в нормальных условиях должна обеспечивать питание всех приемников электроэнергии промышленных предприятий.

ПС «Гежская» 110/6 кВ находится в зоне расположения Гежского месторождения нефти с высоким уровнем потребления электрической энергии. Если из двух работающих трансформаторов будет поврежден и отключен трансформатор, меньший по мощности (2500 кВА), то трансформатор 6300 кВА с допустимой перегрузкой 1,4 обеспечит нагрузку большую, чем нужно, т.е. 6300 × 1,4 = 8820 кВА. Но если отключится трансформатор 6300 кВА, то трансформатор 2500 кВА сможет обеспечить всего лишь нагрузку 3500 кВА, что в нашем случае в связи с увеличением потребления не обеспечит надёжности.

Таким образом, при установке трансформаторов 2,5 и 6,3 МВА на ПС нельзя обеспечить экономически целесообразный режим работы трансформаторов и потребную мощность в аварийном режиме. Последнее можно выполнить только при условии завышения номинальной мощности, которая в нормальном режиме будет недоиспользоваться.

Согласно ГОСТ 14209-69 и 11677-75 условия нормальной работы силовых масляных трансформаторов предусматривают, чтобы:

1)          температура окружающей среды была равной 20оС;

2)                превышение средней температуры масла над температурой окружающей среды составляло для систем М и Д 44оС;

3)          превышение температуры наиболее нагретой точки обмотки над средней температурой обмотки было равно 130оС;

4)          отношение потерь КЗ к потерям ХХ было рано пяти (принимают наибольшее значение запаса по нагреву изоляции);

5)          при изменении температуры на 6оС от среднего ее значения при номинальной нагрузке, равной 85оС, срок службы изоляции изменялся вдвое (сокращался при повышении температуры или увеличивался при ее понижении);

6)          во время переходных процессов в течение суток наибольшая

температура верхних слоев масла не превышала 95оС и наиболее

нагретой точки металла обмотки 140оС. Это условие справедливо только для эквивалентной температуры окружающей среды, равной 20оС. При снижении этой температуры необходимо следить за нагрузкой трансформатора по контрольно-измерительным прибора и во всех случаях не допускать превышение нагрузки сверх 150% номинальной (ГОСТ 14209-69).

Выбор числа, типа и мощности силовых трансформаторов для питания потребителей подстанции производят на основании расчетов и обоснований по графикам электрических нагрузок.

1.           Определяем число трансформаторов на подстанции, исходя из обеспечения надежности питания с учетом категории потребителей;

2.           Намечаем возможные варианты номинальной мощности выбираемых трансформаторов с учетом допустимой нагрузки их в нормальном режиме и допустимой перегрузки в аварийном режиме;

3.           С учетом возможности расширения или развития подстанции решаем вопрос о возможной установке более мощных трансформаторов на тех же фундаментах.

Нефтяная промышленность относиться к потребителям I-ой категории по электроснабжению, в связи с непрерывным технологическим процессом. Согласно ПУЭ потребители первой категории должны обеспечиваться электроэнергией от двух независимых взаимно резервируемых источников питания. Из этого следует, что на реконструируемой подстанции необходимо установить два трансформатора, мощностью достаточной для принятия всей нагрузки первой категории одним трансформатором в аварийном режиме, с учетом работы с допустимой перегрузкой в часы пик.

Перегрузка трансформаторов допускается сверх номинального тока до 40% общей продолжительностью не более 6 часов в сутки в течение 5 суток подряд, при условии что коэффициент загрузки в нормальном режиме не превышал 93%.

Выбор номинальной мощности трансформаторов ПС осуществляем по полной расчётной мощности (п. 2.1): = 3049 кВА. По справочнику выбираем ближайший по мощности трансформатор марки ТМН 6300/110 с низшим напряжением 6,3 кВ и следующими техническими данными: = 44 кВт, =10,5%.

Проверяем возможность работы выбранного трансформатора в аварийном режиме:

;

кВА.


Определим коэффициент загрузки трансформатора в нормальном режиме: ;



Данный трансформатор подходит для установки на модернизируемой подстанции, т.к. в аварийном режиме он способен полностью принять на себя нагрузку также учитывая заданные условия о будущем увеличении нагрузки потребителей, окончательно останавливаемся на варианте замены масляного трансформатора 2,5 МВА трансформатором мощностью 6,3 МВА типа ТМН 6300/110.

 

2.3 Выбор и обоснование контрольных точек расчёта и вида тока короткого замыкания


Основной причиной нарушения нормального режима работы системы электроснабжения является возникновение коротких замыканий в сети или в элементах электрооборудования вследствие повреждения изоляции или неправильных действий обслуживающего персонала. Для снижения ущерба, обусловленного выходом из строя электрооборудования при протекании токов КЗ, а также для быстрого восстановления нормального режима работы системы электроснабжения необходимо правильно определить токи КЗ и по ним выбрать электрооборудование, защитную аппаратуру и средства ограничения токов КЗ.

Места расположения точек КЗ выбирают таким образом, чтобы при КЗ проверяемое электрооборудование, проводники находились в наиболее неблагоприятных условиях. Например, для выбора коммутационной аппаратуры необходимо выбирать место КЗ непосредственно на их выходных зажимах, выбор сечения кабельной линии производят по току КЗ в начале линии. Места расположения точек КЗ при расчётах релейной защиты определяют по ее назначению – в начале или конце защищаемого участка.

Выделим что место короткого замыкания в зависимости от назначения выбирается из следующих основных соображений:

1. Ток КЗ должен проходить по ветвям, для которых выбирается (проверяется) аппаратура или рассчитываются параметры релейной защиты;

2. Для определения наибольшего значения тока КЗ при данном режиме место короткого замыкания выбирается у места установки защиты (в начале линии, до трансформатора и т.д., считая от источника питания). Для определения наименьшего значения тока КЗ место короткого замыкания выбирается в конце защищаемого участка или в конце следующего (резервируемого) участка для проверки резервирующего действия защиты;

3. Для согласования чувствительности двух устройств релейной защиты место короткого замыкания выбирается в конце зоны действия того устройства, с которым ведётся согласование;

4. Для определения коэффициентов распределения место короткого замыкания выбирается в конце участка, следующего за узлом, в котором «происходит подпитка или распределение токов КЗ».

Исходя из вышесказанного произведём расчёт токов КЗ на шинах 110, 6 кВ и на отходящих фидерах в дальнейшем для расчёта релейной защиты в точках начала и конца защищаемого участка.

Выбор вида КЗ в расчётах релейной защиты определяется её функциональным назначением и может быть трёх-, двух-, однофазным и двухфазным КЗ на землю. Для определения электродинамической стойкости аппаратов и жестких шин в качестве расчётного принимают трёхфазное КЗ; для определения термической стойкости аппаратов, проводников - трёхфазное или двухфазное КЗ в зависимости от тока. Проверку отключающей и включающей способностей аппаратов проводят по трёхфазному или по однофазному току КЗ на землю (в сетях с большими токами замыкания на землю) в зависимости от его значения. Трёхфазные КЗ являются симметричными, так как в этом случае все фазы находятся в одинаковых условиях. все остальные виды КЗ являются несимметричными, поскольку при каждом их них фазы находятся не в одинаковых условиях и значения токов и напряжений в той или иной мере искажаются.

В нашем случае необходимым и достаточным условием является расчёт трёх- и двухфазных токов короткого замыкания.

 

2.4 Составление расчётной схемы и схемы замещения


Расчет токов короткого замыкания произведем исходя из значений токов короткого замыкания на шинах 110 кВ ПС «Бумажная», письмо «Пермского РДУ» «О токах короткого замыкания». Для вычисления токов КЗ составим расчетную схему, затем схему замещения.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.