рефераты скачать

МЕНЮ


Проект системы электроснабжения оборудования для группы цехов "Челябинского тракторного завода – Уралтрак"


 кА.


Ударный ток короткого замыкания:


iу =  кА,


где Ку =1,72- ударный коэффициент.

Выбираем коммутационную аппаратуру в начале отходящих линий от подстанции энергосистемы и на вводе главную понизительную подстанцию.

Намечаем к установке выключатель типа: ВГТ-110-элегазовый


t = 0,01 + 0,05 = 0,06 с.


Апериодическая составляющая:


Ia.t =  = 4,81 кА,


где Та - постоянная времени затухания апериодической составляющей, для установок напряжением выше 1000 В Та = 0,03 с.

Тепловой импульс выделяемый током короткого замыкания:

Вк = 25,12 ∙ (0,06 + 0,03) = 56,71 кА2 ∙ с.


Определим ток короткого замыкания в точке К-2:


Х2 = Х1 + ХЛ = 0,2+0,06 = 0,26 о.е,

.

кА.


Устанавливаем выключатель типа: ВГТ-110-элегазовый колонкового типа.

Тепловой импульс выделяемый током короткого замыкания:

Вк = 19,12 ∙ (0,06 + 0,03) = 32,8 кА2 ∙ с.

Выбранные типы аппаратов и их паспортные данные сведены в таблицу 4.2.


Таблица 4.2-Выбор коммутационной аппаратуры в начале отходящих линий от подстанции.

Расчётные данные

Каталожные данные

Выключатель

Разъединитель

ВГТ-110-40/2500 У1

РДЗ - 110 - 1000 - У1


 

U, кВ

110

Uном, кВ

110

110

Imax, А

175,72

Iном, А

2500

1600

Iп,о=Iп,τ, А

25,10

Iоткл, кА

40

-

Iat, кА

4,81

iа ном, кА

40,00

-

Iуд, кА

61,06

iдин, кА

102

100

Bk, кА^2 ∙ с

56,71

Iтерм^2*tтерм

4800

4800


Для защиты трансформаторов от перенапряжений в питающей сети устанавливаем ОПН-У-110/77, в нейтраль силового трансформатора включаем ОПН-У-110/56, ЗОН-110У-IУ1 (Iн = 400 А, tтер = 119 кА2с).

На вводе в ГПП устанавливается аналогичная коммутационная аппаратура.


4.3 Технико-экономические показатели сравниваемых схем внешнего электроснабжения


При сравнении вариантов учитываются: коммутационная аппаратура отходящих линий от питающей подстанции энергосистемы, воздушные линии, вводные коммутационные аппараты главной понизительной подстанции, силовые трансформаторы главной понизительной подстанции.

Годовые приведенные затраты:


,                                                                            (4.14)

Еi = Ен + Еаi + Еmрi ,                                                                                                                            (4.15)


где Еi – общие ежегодные отчисления от капитальных вложений, являющиеся суммой нормативного коэффициента эффективности Ен, отчислений на амортизацию Еаi и расходов на текущий ремонт.

Кi – сумма капитальных затрат i-ой группы одинаковых электроприемников.

Сэ – стоимость годовых потерь электроэнергии.

При проектировании сетей электроснабжения промышленных предприятий учитывается стоимость потерь электроэнергии по двухставочному тарифу:


Сэ = (∆Ат + ∆Ал)∙С0 ,                                                                                                                            (4.16)

 ,                                                                        (4.17)


где С0 – удельная стоимость потерь электроэнергии;

α – основная ставка тарифа;

Показатели вариантов сведены в таблицы 4.3 и 4.4.


Таблица 4.3- Технико - экономическое сравнение - 35 кВ

Электроэнергия






α, р/(кВт*год)

2163,36

τ, ч

2199






β, р/(кВт*ч)

1,04

Км

0,93






δ

1,02

Со, р/(кВт/ч)

1,99






Наимен-ие оборуд-ия

Единицы измерения

Количество

Стоим.ед., тыс. руб.

Кап. вложения, тыс. руб.

Отчисления, о.е.

Затраты, тыс.руб.

Потери эл. эн-ии, кВт*ч

Стоим. потерь электр-ии, тыс. руб.

Ен

Етр

Еа

Итого

Трансформатор силовой

шт

2

4500

9000

0,12

0,01

0,063

0,19

1737

526174

1 049

ТРДН-25000/35

ВЛ 35 кВ на ЖБ опорах

км

2

480,5

961

0,12

0,004

0,028

0,15

146,1

99374

198

Выключатель

шт

4

300

1200

0,12

0,01

0,063

0,19

231,6

-

-

ВГБЭ-35-40/630 У1

Разъединитель

шт

6

70

420

0,12

0,01

0,063

0,19

81,1

-

-

РДЗ-35-1000-УХЛ1

ОПН

шт

6

13

78

0,12

0,01

0,063

0,19

15,1

-

-

ОПН - 35У1

Трансформатор тока

шт

6

5

30

0,12

0,01

0,12

0,25

7,50

-

-

ТВ-35-1200

ИТОГО

 

 

 

11689

 

 

 

 

2218

625548

1247

 


Таблица 4.4- Технико - экономическое сравнение - 110 кВ

Наим-ие оборуд-ия

Единицы измерения

Количество

Стоим.ед., тыс. руб

Кап. вложения, тыс. руб.

Отчисления, о.е.

Затраты, тыс.руб.

Потери эл. эн-и, кВт*ч

Стоим. потерь эл/эн-ии, тыс. руб.

Ен

Етр

Еа

Итого

Трансформатор силовой

шт

2

6000

12000

0,12

0,01

0,063

0,19

2316

531516

1 017

ТРДН-25000/110

ВЛ 110 кВ на ЖБ опорах

км

2

262,1

524

0,12

0,005

0,035

0,16

83,9

35385

68

Выключатель

шт

4

850

3400

0,12

0,01

0,063

0,19

656,2

-

-

ВГТ-110-40/2500 У1

Разъединитель

шт

6

105

630

0,12

0,01

0,063

0,19

121,6

-

-

РДЗ-110-100-У1

ОПН - 110-У-110/77

шт

6

35

210

0,12

0,01

0,063

0,19

40,53

-

-

ОПН-У-110/56

шт

2

32

64

0,12

0,01

0,063

0,19

12,35

 

 

ЗОН-110-У-IУ1

шт

2

20

40

0,12

0,01

0,063

0,19

7,72

 

 

Трансформатор тока

шт

6

16,5

99

0,12

0,01

0,063

0,19

19,11

-

-

 ТВ-110I-200

ИТОГО

 

 

 

16967

 

 

 

 

3257

566901

1084


Таблица 4.5 - Сравнение экономических показателей

Вариант

Кап. затраты, тыс. руб.

Приведённые кап. затраты, тыс. руб.

Потери эл. энергии, кВт*ч

Стоимость потерь, тыс. руб

Приведённые затраты, тыс. руб.

35 кВ

11 689

2 218

625 548

1 247

3 466

110 кВ

16 967

3 257

566 901

1 084

4 342


Вариант 110 кВ экономичнее на 20,18%, что более 15% поэтому окончательно выбираем вариант 110 кВ.

 

5.       Выбор величины напряжения и схемы внутреннего электроснабжения предприятия, расчет питающих линий


5.1 Выбор величины напряжения


Выбор величины напряжения распределительных сетей предприятия зависит от величины нагрузок 6 и 10 кВ. Критерием выбора являются технико-экономические показатели, в первую очередь приведенные затраты, которые рассчитываются как для сети, так и для понижающих подстанций.

В данном проекте согласно: "Инструкции по проектированию электроснабжения промышленных предприятий. СН 174-75 (Л3), принимаем напряжение внутреннего электроснабжения предприятия на напряжение 10 кВ.


5.2 Построение схемы внутреннего электроснабжения предприятия


Схемы распределения электроэнергии на первой ступени от главной понизительной подстанции до распределительных пунктов на напряжение 10 кВ применяем магистральные при последовательном линейном расположении подстанций, для группы технологически связанных цехов, число присоединенных подстанций две, три и радиальные при нагрузках, располагаемых в разных направлениях от источника питания. При этом одноступенчатыми радиальными схемами в основном нужно выполнять при питании больших сосредоточенных нагрузок. Питание нагрузки ниже 1 кВ выполняется радиально. Электрическая схема представлена на чертеже 2.


5.3 Конструктивное выполнение электрической сети


Выбор способа распределения электроэнергии зависит от величины электрических нагрузок, их размещения, плотности застройки предприятия, конфигурации, технологических, транспортных и других коммуникаций, типа грунта на территории предприятия.

Выбираем прокладку кабелей в траншее как очень простой и экономически выгодный способ, применяемый при прокладке до шести кабелей. Для прокладки используем кабель марки ААШв. Так же единожды прокладываем кабель в лотках, марка кабеля ААШв.


5.4 Расчет питающих линий


Сечение кабелей напряжением 10 кВ. определяем по экономической плотности тока, и проверяются по допустимому току кабеля в нормальном режиме работы с учетом условий по его прокладке, по току перегрузки, потери напряжения в послеаварийном режиме и термической стойкости к токам короткого замыкания. Расчетный ток в кабельной линии в нормальном режиме:


 ,                                                                                 (5.1)


где Sр.к − мощность, которая должна передаваться по кабельной линии в нормальном режиме, кВА. Например, при питании двухтрансформаторной подстанции − расчетная нагрузка, приходящаяся на один трансформатор. Для магистральной линии мощность Sр.к должна определяться для каждого участка путем суммирования расчетных нагрузок соответствующих трансформаторов, питающихся по данному участку магистральной линии.

Сечение кабельной линии, определяется по экономической плотности тока:


,                                                                                      (5.2)

где jэ – экономическая плотность тока, зависящая от типа кабеля и продолжительности максимальной нагрузки. jэ = 1,4 А/мм2

По результатам расчета выбирается кабель, имеющий ближайшее меньшее стандартное сечение по отношению к экономически целесообразному. В разделе «Расчет токов короткого замыкания» по результатам расчета были приняты минимальные сечения кабелей. Если площадь сечения кабеля, выбранная по условиям нормального и утяжеленного режимов работы, оказывается меньше площади термически устойчивого сечения Fтс, то сечение такого кабеля увеличиваем до ближайшего меньшего стандартного сечения по отношению к Fтс. Расчетные данные сведем в таблицу 5.1

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.