рефераты скачать

МЕНЮ


Проектирование адиабатной выпарной установки термического обессоливания воды

Prст=1,91 – число Пранкля при температуре стенки (принимаем равной температуре насыщения в камере);

el=1 – коэффициент, учитывающий влияние начального участка по таблице (4-3) [13], при d/l больше 50.



3.1.11.3 Тогда коэффициент теплоотдачи от жидкости пару составит a1

где l=671,02´103 Вт/м´К – теплопроводность воды при средней температуре рассола в конденсаторе по таблице (2-8) [18].


3.1.12 Найдём значение коэффициента теплоотдачи при конденсации вторичного пара a2



где l=673,7´10-3 Вт/м´К, r=966,86 кг/м3, m=325,3´10-6 Па´с – соответственно теплопроводность, плотность и динамическая вязкость плёнки конденсата при средней температуре в аппарате tпл=ts+ tст/2=92,53+82,3/2=87,4 оС;

e=0,4 – коэффициент, зависящий от количества труб в вертикальном ряду по номограмме на рисунке (4-8) [13]

3.1.13 Пренебрегаем отложениями на поверхностях труб со стороны конденсирующегося пара, а со стороны нагреваемого рассола учтём слой отложений солей жесткости толщиной d=0,5 мм=0,5´10-3м с теплопроводностью lн=7,2 Вт/м´К (стр. 55 [1]).

3.1.14 Тогда по формуле (3.7) [27] найдём коэффициент теплопередачи от пара к охлаждающему рассолу в конденсаторе первой ступени k1



где lст=265 Вт/м´К – теплопроводность материала трубок теплообменника латуни (стр. 55 [1]).

3.1.15 По найденному значению коэффициента уточним площадь поверхности теплообмена конденсатора-пароохладителя первой ступени, как наиболее напряжённой Fк”



3.1.16 Сравнивая значение необходимой площади поверхности теплообмена Fк”=1622,6 м2 с принятой действительной площадью поверхности теплообмена конденсаторов пароохладителей теплоиспользующих ступеней Fк’=1872 м2, видим. что устанавливаемые конденсаторы имеют запас по поверхности теплообмена DF=15% и обеспечивают заданный режим.

3.1.17 Учитывая, что другие ступени установки работают в менее напряженных режимах принимаем площади поверхностей теплообмена равными тем, которые были определены из конструкторских расчётов.

3.1.18 Определим геометрические размеры и действительную площадь теплообмена конденсаторов теплоотводящего контура

3.1.18.1 Конденсаторы седьмой ступени

3.1.18.1.1 По имеющимся данным теплового расчёта имеем суммарную площадь поверхности теплообмена конденсаторов седьмой ступеней равную Fк7=2500 м2.

3.1.18.1.2 Принимаем среднюю скорость жидкости в трубах w=3 м/с (стр. 57 [1]).

3.1.18.1.3 Диаметр трубок, длину, материал и тип пучка – аналогично ранее рассмотренным конденсаторам.

3.1.18.1.4 Определим количество трубок в конденсаторе охлаждающего рассола по уравнению неразрывности исходя из заданной скорости воды в трубах nр



где uр=0,001009 м3/кг – удельный объём воды при средней температуре охлаждающего рассола в седьмой ступени tср=(tр7+tр8)/2=(43+46)/2=44,5 оС по таблице 2-1 [18].

3.1.18.1.5 Определим количество трубок в конденсаторе исходной воды по уравнению неразрывности nисх



где uисх=0,00100805 м3/кг – удельный объём воды при средней температуре охлаждающего рассола в седьмой ступени tср=(tисх7+tисх8)/2=(46+40,7)/2=43,3 оС по таблице 2-1 [18].


3.1.18.1.6 Определим количество трубок в конденсаторе охлаждающей воды по уравнению неразрывности nохл



где uохл=0,0010051 м3/кг – удельный объём охлаждающей воды при средней температуре в седьмой ступени tср=(tохл1+tохл2)/2=(35+28)/2=32,5 оС по таблице 2-1 [18].

3.1.18.1.7 Таким образом, общее число трубок в конденсаторе седьмой ступени составляет nS=nр+nисх+nохл=1864+338+1831=4034 шт.

3.1.18.1.8 Определим число ходов в конденсаторе z по необходимой площади теплообмена Fк7 из уравнения неразрывности принимаем число ходов в конденсаторе седьмой ступени z=2.



3.1.18.1.9 Определим геометрические размеры трубного пучка

3.1.18.1.9.1 Из геометрических размеров камеры испарения принимаем ширину всего трубного пучка Bп=4 м, а ширину одного хода Bп1=2 м.

3.1.18.1.9.2 Отсюда найдём количество трубок в горизонтальном ряду одного хода пучка n1 принимаем n1=62 шт.


3.1.18.1.9.3 Тогда количество рядов составит n2

n2=n/n1=4034/62=65,01;

принимаем количество трубок в вертикальном ряду n2=66 шт.

3.1.18.1.9.4 Высота трубного пучка составит Hтр


Hтр=n2´s+dн=66´32´10-3+25´10-3=2,105 м.


3.1.18.1.9.5 Уточнённое количество труб в пучке составит


nS=n1´n2=62´66=4092 шт.


3.1.18.1.10 Уточним суммарную площадь поверхности теплообмена конденсаторов седьмой ступени Fк7’


Fк7’=p´nS´dср´l´z=3,14´4092´22,5´10-3´6´2=3469 м2.


3.1.18.1.11 Сравниваем полученную величину со значением поверхности теплообмена, полученным из теплового расчёта Fк’=3469 м2 больше Fк7=2500 м2, делаем вывод, что принятая из условия обеспечения необходимой скорости движения площадь поверхности конденсатора является достаточной. Запас по площади составляет DF7=39%.

3.1.18.2 Конденсатор восьмой ступени принимаем аналогичным. Выполним проверку по необходимой площади теплообмена, вычисленной из теплового баланса: Fк’=3469 м2 больше Fк8=3459 м2;

запас поверхности теплообмена составляет DF8=0,3%.

3.1.18.3 Конденсатор девятой ступени

3.1.18.3.1 По имеющимся данным теплового расчёта суммарная площадь поверхности теплообмена конденсаторов девятой ступеней Fк9=5492 м2.

3.1.18.3.2 Принимаем среднюю скорость жидкости в трубах w=3 м/с (стр. 57 [1]).

3.1.18.3.3 Диаметр трубок, длину, материал и тип пучка – аналогично ранее рассмотренным конденсаторам.

3.1.18.3.4 Определим количество трубок в конденсаторе исходной воды по уравнению неразрывности аналогично предыдущим расчётам nисх



3.1.18.3.5 Определим количество трубок в конденсаторе охлаждающей воды по уравнению неразрывности nохл

3.1.18.3.6 Суммарное число трубок в конденсаторе девятой ступени составляет nS=nисх+nохл=338+1709=2047 шт.



3.1.18.3.7 Определим число ходов в конденсаторе z по необходимой площади теплообмена Fк9 из уравнения неразрывности принимаем число ходов в конденсаторе седьмой ступени z=6.



3.1.18.3.8 Определим геометрические размеры трубного пучка

3.1.18.3.8.1 Из геометрических размеров камеры испарения, с учётом необходимого числа ходов, принимаем ширину всего трубного пучка Bп=4 м, а ширину одного хода Bп1=0,65 м.

3.1.18.3.8.2 Отсюда найдём количество трубок в горизонтальном ряду одного хода пучка n1 принимаем n1=20 шт.



3.1.18.3.8.3 Тогда количество рядов составит n2


n2=n/n1=2047/20=102,4;


принимаем количество трубок в вертикальном ряду n2=110 шт.

3.1.18.3.8.4 Высота трубного пучка составит Hтр


Hтр=n2´s+dн=110´32´10-3+25´10-3=3,545 м.


3.1.18.3.8.5 Уточнённое количество труб в пучке составит


nS=n1´n2=20´110=2200 шт.


3.1.18.3.9 Уточним суммарную площадь поверхности теплообмена конденсаторов девятой ступени Fк9’


Fк9’=p´nS´dср´l´z=3,14´2200´22,5´10-3´6´6=5595 м2.


3.1.18.3.10 Сравниваем полученную величину со значением поверхности теплообмена, полученным из теплового расчёта: Fк9’=5595 м2 больше Fк9=5492 м2, делаем вывод, что принятая из условия обеспечения необходимой скорости движения площадь поверхности конденсатора является достаточной. Запас по площади составляет DF7=1,9 %.


3.2 Выбор и расчёт переточных устройств и высоты уровней жидкости в камерах испарения


3.2.1 Камеры испарения разделены между собой поперечными перегородками, в нижней части которых выполнены специальные перепускные барьеры, создающие необходимую разницу давлений между смежными ступенями.

Весьма важно выбрать рациональный тип перепускного устройства, так как от этого зависят равномерность испарения воды, вынос солей с паром в сепаратор, а также протекание вторичного пара в соседние ступени.

Переточные устройства могут представлять собой как непосредственно устройства ввода – прямоугольное или круглое придонное отверстие, цилиндрические, конические и другие насадки, так и канал, образованный стенками камеры с вертикальными или наклонными перегородками и отбойными козырьками. Подача воды в камеру испарения может осуществляться также через подводящие трубы, снабжённые дросселирующими или распределительными устройствами.

Применяемые в камерах перегородки (одна или несколько) формируют ток и удлиняют путь жидкости в камере, турбулизируют её и уменьшают обратные токи, что улучшает характеристики процесса вскипания. Однако применение перегородок увеличивает гидравлическое сопротивление, повышает уровень жидкости, способствует возникновению застойных зон в камерах.

Наиболее приемлемым является безбарботажный режим реализации перепуска жидкости из одной камеры в другую, который позволяет реализовать наличие перегородок в камерах. При таком режиме улучшается прокипание жидкости и допустимо большее напряжение объёма камеры по пару, чем в барботажном режиме без существенного снижения качества дистиллята.

3.2.2 Анализируя существующие типы переточных [8], [диссертация] устройств выбираем фазовый порог для осуществления безбарботажного режима с перегородкой в камере испарения.

3.2.3 Принимая равный перепад давления по ступеням найдём падение давления в одной ступени Dр



где р1=1,01325´105Па и р9=7,3749´103Па – температура насыщения соответственно в первой и последней камерах испарения.

3.2.4 Определим геометрические размеры данного типа перепускного устройства применительно к проектируемой установке по характеристикам на стр. 186 [20]

3.2.4.1 Принимаем уровень жидкости в первой камере испарения равный Hс1=0,5 м.

3.2.4.2 Высота щели перепускного устройства из первой ступени во вторую составляет HB


HB=0,476´Hc1=0,476´0,5=0,238 м.


3.2.4.3 Высота перегородки в камере испарения составит HA1


HA1=0,75´Hc1=0,75´0,5=0,375 м.


3.2.4.4 Расстояние от точки входа рассола в камеру до перегородки l0

l0=0,15´L=0,15´4,6=0,69 м,


где L=4,6 м – длина камеры испарения определённая ранее.

3.2.4.5 Площадь сечения перепускного устройства составляет Fпер.


Fпер=HB´B=0,238´6=1,428 м2,


где B=6 м – длина камеры испарения.

3.2.4.6 Для данного типа переточного устройства находим величину коэффициента гидравлического сопротивления по диаграмме 4-14 на стр. 124 для отношения F/F0 =0,35 [7] z=10.

3.2.4.7 Находим скорость истечения рассола из первой ступени во вторую из уравнения неразрывности w1



где r1=962,82 кг/м3 – плотность воды при температуре в первой камере испарения по таблице 2-1 [18].

3.2.4.8 По формуле (7-44) [27] находим высоту столба жидкости во второй камере испарения Hс2



где r2=967,34 кг/м3 – плотность рассола при температуре во второй ступени по таблице 2-1 [18].

3.2.4.9 Высота перегородки во второй камере испарения составит HA2


HA2=0,75´Hc2=0,75´0,597=0,448 м.

3.2.4.10 Аналогично находим высоту перегородки и уровней жидкости в остальных камерах испарения, принимая площадь сечения перепускного устройства равной во всех ступенях

3.2.4.10.1 Находим скорость истечения рассола из второй ступени в третью из уравнения неразрывности w2



3.2.4.10.2 Высота столба жидкости в третьей камере испарения Hс3 по формуле (7-44) [27]

где r3=971,63 кг/м3 – плотность рассола при температуре в третей ступени по таблице 2-1 [7].



3.2.4.10.3 Высота перегородки в третьей камере испарения составит HA3


HA3=0,75´Hc3=0,75´0,717=0,538 м.


3.2.4.10.4 Скорость истечения рассола из третьей ступени в четвёртую из уравнения неразрывности w3



3.2.4.10.5 Высота столба жидкости в четвёртой камере испарения Hс4 по формуле (7-44) [27]


где r4=975,71 кг/м3 – плотность рассола при температуре в четвёртой ступени по таблице 2-1 [7].

3.2.4.10.6 Высота перегородки в четвёртой камере испарения составит HA4


HA4=0,75´Hc4=0,75´0,875=0,656 м.


3.2.4.10.7 Скорость истечения рассола из четвёртой ступени в пятую из уравнения неразрывности w4



3.2.4.10.8 Высота столба жидкости в пятой камере испарения Hс5 по формуле (7-44) [27]



где r5=979,54 кг/м3 – плотность рассола при температуре в пятой ступени по таблице 2-1 [18].

3.2.4.10.9 Высота перегородки в пятой камере испарения составит HA5


HA5=0,75´Hc5=0,75´1,056=0,792 м.


3.2.4.10.10 Скорость истечения рассола из пятой ступени в шестую из уравнения неразрывности w5


3.2.4.10.11 Высота столба жидкости в шестой камере испарения Hс6 по формуле (7-44) [27]



где r6=983,19 кг/м3 – плотность рассола при температуре в шестой ступени по таблице 2-1 [18].

3.2.4.10.12 Высота перегородки в шестой камере испарения составит HA6


HA6=0,75´Hc6=0,75´1,260=0,945 м.



3.2.4.10.13 Скорость истечения рассола из шестой ступени в седьмую из уравнения неразрывности w6



3.2.4.10.14 Высота столба жидкости в седьмой камере испарения Hс7 по формуле (7-44) [27]


где r7=986,46 кг/м3 – плотность рассола при температуре в седьмой ступени по таблице 2-1 [7].

3.2.4.10.15 Высота перегородки в седьмой камере испарения составит HA7


HA7=0,75´Hc6=0,75´1,487=1,115 м.


3.2.4.10.16 Скорость истечения рассола из седьмой ступени в восьмую из уравнения неразрывности w7



3.2.4.10.17 Высота столба жидкости в восьмой камере испарения Hс8 по формуле (7-44) [27]



где r8=989,55 кг/м3 – плотность рассола при температуре в восьмой ступени по таблице 2-1 [18].

3.2.4.10.18 Высота перегородки в восьмой камере испарения составит HA8


HA8=0,75´Hc8=0,75´1,736=1,302 м.


3.2.4.10.19 Скорость истечения рассола из восьмой ступени в девятую из уравнения неразрывности w8


3.2.4.10.17 Высота столба жидкости в девятой камере испарения Hс9 по формуле (7-44) [Таубман]



где r9=992,26 кг/м3 – плотность рассола при температуре в девятой ступени по таблице 2-1 [7].

3.2.4.10.18 Высота перегородки в девятой камере испарения составит HA9


HA9=0,75´Hc9=0,75´2,008=1,506 м.


3.2.5 Из приведённых расчётов видно, что выбранный тип перепускного устройства обеспечивает частичное гашение существующего перепада давлений между ступенями. Уровень испаряемого рассола в камерах равномерно повышается с Hс1=0,50 м до Hс9=2,008 м.

Гасить напор между ступенями полностью нельзя, так как в низкотемпературных ступенях трудно обеспечить свободное истечение рассола. В этом случае движущая сила процесса парообразования будет значительно ниже.

3.3 Компоновка и основные размеры установки


3.3.1 По известной площади зеркала испарения ступеней fS=28 м2 и стандартной длины труб принимаем геометрические размеры одной камеры испарения равными:

- длина L= 4,6м;

- ширина B= 6 м.

3.3.2 Высоту одной ступени находим из расчёта высоты сепарационного пространства не менее одного метра [20]

3.3.2.1 Наибольшая высота трубного пучка составляет Hтр9=3,545 м.

3.3.2.2 Наибольшая высота уровня рассола в камере испарения Hс9=2,008 м.

3.3.2.3 Конструктивно принимаем высоту пространства от поверхности испарения до поддона сбора дистиллята h=0,8 м, высоту сепарационного пространства H0=1,5 м.

3.3.2.4 Расстояние от нижней точки трубного пучка до поддона сбора дистиллята принимаем равным hр= 0,2 м, толщину листа материала поддона hст=0,003м=3 мм.

3.3.2.5 Величину пространства над трубным пучком конденсатора принимаем равным hп=0,5 м.

3.3.2.6. Тогда необходимая высота ступени составит H


H=Hтр9+Hс9+H0+h+hп+hр+hст=3,545+2,008+0,8+0,2+0,003+0,5=7,056 м,


принимаем высоту одной камеры испарения H=7 м.

3.3.3 Из полученных результатов можно сделать вывод, что обеспечивая необходимую высоту сепарационного пространства в девятой ступени, она будет обеспечиваться и в остальных ступенях, где уровень жидкости меньше.

3.3.4 Камеры соединяются друг с другом перепускными устройствами и располагаются последовательно в одном корпусе, конденсаторы располагаются поперёк хода рассола.

3.3.5 Корпус камер испарения выполняется из листовой стали Ст.3, толщиной 10 мм. Жесткость обеспечивается каркасом из металлопроката.

3.3.6 Согласно конструкции, общая площадь камеры испарения в верхней части делится на две части: одну часть занимает сепарационное устройство, другую – трубный пучок конденсатора и поддон отвода дистиллята. В связи с этим принимаем ширину трубного пучка равную Bтр=4 м, длину Lтр=6 м.

(3.63)

 
3.3.7 Площадь сечения сепарационного устройства ступени составит Fсеп.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.