рефераты скачать

МЕНЮ


Линия электропередачи напряжением 500 кВ

Uг =  = = 15,563 кВ

сosφг = =

== 0,998

ΔРл1 = 59,4 МВт

ΔQл1 = 344,4 МВAp

P”л1 = Р’л1 – ΔРл1 = 1018 – 59,4 = 958,6 МВт

Q”л1 = Q’л1 – ΔQл1 = 144,4 – 344,4 = -200 МВАр

Р2 = P”л1 - ΔРК1/2 = 958,6 – 4,08/2 = 956,5 МВт

Q2 = Q”л1 + U22· Y1/2 = -200 + 5002·2,11·10-3 /2 = 63,9 МВAp

Pсис = Р2 – Рпс = 956,5 – 520 = 436,5 МВт

Рат = Рпс = 520 МВт

Примем : Qсис = 100 МВAp

Qат = Q2 – Qсис =63,9 – (-100) = 163,9 МВAp

Q’ат = Qат - 163,9 - ·30,55= 127,5 МВAp

U’2 = U2 – Q’ат·Xt2 /U2= 500 – 127,5·30,55/500 = 492,2 кВ

Uсн = U’2·230/500 = 226,4 кВ

Рн = 10 МВт

Ратс = Рпс - Рн = 520 – 10 = 510 МВт

Qатс = Ратс· tgφпс =510·tg(arccos(0.96))=148,75 МВAp

Q’нн = Q’ат - Qатс = 127,5 – 148,75 = -21,2 МВAp

Qнн = Q’нн – (Q’нн/ U’2)2· Xtн2 = -21,3 МВAp

Uнн = (U’2 - Q’нн ·Xtн2 /U’2)·(10.5/500) = 10,5 кВ


Для выработки необходимой реактивной мощности предполагается установка двух СК типа КСВБО-50-11.

Произведём расчёт линии Л – 2.


Рл2 = Pсис - ΔРК2/2 = 436,5 – 3,04/2 = 435 МВт

Q’л2 = Qсис + U22· Y2/2 = -100 + 5002·1,543·10-3/2 = 92,9 МВАр

ΔРл2 = = 9,6 МВт

ΔQл2 = 90,5 МВAp

P’сис = Рл2 – ΔРл2 = 435 – 9,6 = 425,4 МВт

Q’сис = Q’л2 – ΔQл2 = 92,9 – 90,5 = 2,4 МВАр

Uсис =  = 491,1 кВ

Q”сис = Q’сис + Uсис2· Y2/2 = 2,4 + 491,12·1,543·10-3/2 = 187 МВAp

сosφсис = cos(arctg) = 0,91


Произведём проверку режима:

1)     UННдопmin = 10,45кВ <UНН = 10,5 кВ < UННдопmax=11,55кВ

2)     UСН = 226,4≤ UСНдопmax= 253 кВ

3)     UГдопmin=14,96 кВ < Uг = 15,56 кВ < UГдопmax=16,54 кВ

4)     cosφгном = 0,91 > cosφгном = 0,85


Рассчитанные основные рабочие режимы электропередачи требуют установки УПК 40%, двух синхронных компенсаторов типа КСВБ0-50-11, трех групп реакторов 3∙РОДЦ – 60 в начале линии 1, одной группы реакторов 3∙РОДЦ – 60 в конце линии 1 и двух групп реакторов 3∙РОДЦ – 60 в начале линии 2.


2.4.4 Расчёт режима синхронизации на шинах промежуточной подстанции

В этом случае линия головного участка электропередачи включена со стороны станции и отключена со стороны промежуточной подстанции. При этом приемная подстанция питается от приемной системы по второму участку электропередачи. Напряжение на шинах подстанции определяется обычным путем, исходя из того, что синхронизация осуществляется в режиме максимальных нагрузок.

Рассчитаем участок электропередачи система – промежуточная подстанция.

Параметры схемы замещения:


ЛЭП 2: R2 = 12,155 Ом; Х2 = 114,31 Ом;

 Y2 = 1,153·10-3 См ΔРК2 = 8·380/1000 = 3,04 МВт


Трансформатор ПС: Хt2 = 61,1/2 = 30,55 Ом ; Хtн2 = 113,5/2 = 56,75 Ом

Примем Р3 = 1,05·РПС = 546 МВт; Q3 = 0


Uсис = 510 кВ

Р”л2 = P3 - ΔРК2/2 = 546 – 3,04/2 = 544,5 МВт

Q”л2 = U22· Y2/2 = 5002·1,543·10-3/2 = 208,6 МВАр


Определим значение реактивной мощности, при которой напряжение U2 не будет превышать 500 кВ.


Q”л2 =-13,3 МВАр

Устанавливаем в конце второй линии группу реакторов 3·РОДЦ-60


Qp = 180·(Uсис/525)2 = 180·(510/525)2 = 169,8 МВАр

Q”л2 = Q”л2 – Qp = 208,6 – 169,8 = 38,7 МВАр

ΔР”л2 = = 13,9 МВт

ΔQ”л2 = 130.9 МВAp

Р’л2= Р”л2 – ΔР”л2 = 544.5 – 13,9 = 530,6 МВт

Q’л2 = Q”л2 – ΔQ”л2 = 38,7 – 130,9 = -92,2 МВАр

U2 =  = 488,3 кВ


Далее проверим напряжения на НН и СН подстанции.


Рат = Р’л2 - ΔРК2/2 = 530,6 – 3,04/2 = 529 МВт

Qат = Q’л2 + U22· Y2/2 = -92,2 + 488,32·1,543·10-3/2 = 91,8 МВАр

Q’ат = Qат - = 54,8 МВАр

U’2 = = 482,5 кВ

Uсн = U’2 ·230/500 = 222 кВ

Рн = 10 МВт

Ратс = Рат - Рн = 529 – 10 = 519 МВт

Qатс = Ратс· tgφпс =519·tg(arccos(0.96))=151,4 МВAp

Q’нн = Q’ат - Qатс = 54,8 – 151,4 = -96,6 МВAp

Qнн = Q’нн – (Q’нн/ U’2)2· Xtн2 = -98,9 МВAp

Uнн = (U’2 - Q’нн ·Xtн2 /U’2)·(10.5/500) = 10,46 кВ


Оставшийся дефицит реактивной мощности покрывают два синхронных компенсатора установленных ранее.


Uнн = 10,46 < Umaxск = 11,55 кВ.


Следовательно, режим допустим.

Теперь рассчитаем первый участок электропередачи.

Вторая цепь линии Л-1 отключена, на ГЭС в работе 1 генератор и 1 блочный трансформатор.

Для синхронизации необходимо чтобы напряжения на отключённом конце головного участка и на шинах промежуточной подстанции были равны.


U2 = 488,3 кВ

U2 = U1/cos(β0∙L) = 525/ cos(1,111∙10–3∙510) = 622,25 кВ


Для уменьшения напряжения на открытом конце головного участка ставим реакторы в конце головной линии.

Определим необходимое количество этих реакторов:


U1 = 525 кВ

Zc =  Ом

β = Im= 1,111·10-3 рад/км

А = cos(β·L1) = 0,844

Аэ = 525/488,3 = 1,075

В = Zc ·sin(β·L1) = 150.45

Yртреб = (Аэ – А)/В = 1,538·10-3 См

Yр = 180/5252 = 6,531·10-4 См

N = Yртреб / Yр = 2,35

Т. о. устанавливаем две группы реакторов 3∙РОДЦ – 60.

Тогда


U2XX =  = 504.7 кВ


Что неравно напряжению на шинах промежуточной подстанции, питающейся от системы, поэтому уменьшим напряжение в начале линии за счет регулирования возбуждения генератора станции.


U2XX =  = 490 кВ


Что равно напряжению на шинах промежуточной подстанции.

Определим возможность существования такого режима для генератора.


ЛЭП 1: R1 = 15,49 Ом; Х1 = 149,665Ом;

 Y1 = 2,111·10-3 См ΔРК1 = 8·510/1000 = 4,08 МВт


Трансформатор ГЭС: Хt1 = 89,5 Ом

Qp = 180·(U2ХХ/525)2 = 180·(490/525)2 = 147,9 МВАр

Q”л1 =2·Qp - U2ХХ2· Y1/2 =2·147,9 - 4902·2,111·10-3/2 = 56,7 МВАр

Q’л1 =Q”л1 + (Q”л1/U’2XX)2· X1 = 58.9 МВAp

U1 = 510 кВ

Qл1 = Q’л1 – U12· Y1/2 =58,9 - 5102·2,111·10-3/2 = -215,6 МВАр


Для уменьшения Uг ставим в начале головной линии группу реакторов 3∙РОДЦ – 60.


Qл1 = Qл1 + Qp = -215,6 + 147,9 = -67,7 МВАр

Uг =  = 15,132 кВ

Qг =Qл1 + (Qл1/U1)2· Xt1 = -66,3 МВAp

Iг = = -2,53 А

Iгном = = 9,531 А

Iг = 2,53 кА < Iг ном = 9,531 кА


Исследуем возможность самовозбуждения генератора.


Хс = (j·Y1/2)-1 = -j947.4 Ом

Хр = j·5252/Qр = j1864 Ом

Z1 = R1 + jX1 + Хс· Хр/( Хс+ Хр) = 15.49 – j1777 Ом

Zвнеш = Z1· Хс /( Z1+ Хс) = 1,87 – j618 Ом

Xd = j·1.31·5002/306 = 1070 Ом


Zвн носит емкостной характер => возможно самовозбуждение генератора.

Т.к. Xd= 1070 Ом < Xвн = 1777 Ом, то рабочая точка не попадает в зону самовозбуждения.


Rвн

 

X

 

Рис.2.5. Зоны самовозбуждения генератора

2.3.5 Расчёт режима синхронизации на шинах передающей станции

В этом случае линия, через которую осуществляется синхронизация, включена со стороны промежуточной подстанции и отключена со стороны ГЭС.













Рис.2.6. Схема замещения электропередачи в режиме синхронизации на шинах передающей станции


Значения U2, PC берем из предыдущего режима:


U2=488,3 кВ, PCИС=529 МВт

U1хх = U2/cos(β0∙ℓ) = 488,3 /cos(1,111∙10–3∙510) = 568,4 кВ.


Необходимо, чтобы U1хх ≤ 525 кВ.

Для понижения напряжения на холостом конце головного участка ставим там реакторы.


Zc =  Ом

β = Im= 1,111·10-3 рад/км

А = cos(β·L1) = 0,844

Аэ = 488,3 / 525= 0,914

В = Zc ·sin(β·L1) = 150.45

Yртреб = (Аэ – А)/В = 4,646·10-4 См

Yр = 180/5252 = 6,531·10-4 См

N = Yртреб / Yр = 0,7


Т. о. устанавливаем группу реакторов 3∙РОДЦ – 60.

Тогда


U1XX =  = 518,4 кВ

Qp = 180·(U1ХХ/525)2 = 180·(518,4/525)2 = 175,5 МВАр

Q’л1 = U1ХХ2· Y1/2 - Qp =518,42·2,111·10-3/2 – 175,5 = 108,1 МВАр

Q”л1 =Q’л1 - (Q’л1/U1XX)2· X1 = 101,6 МВAp

Q2 = Q”л1 + 488,32· Y1/2 = 101,6 - 488,32·2,111·10-3/2 = 353,3 МВАр

Pсис = Рпс = 529 МВт

Qсис = 91,8 МВAp

Qат = Q2 + Qсис =353,3 + 91,8 = 445,1 МВAp

U’2 = 488,3 – Qат·Xt2 /488,3= 488,3 – 445,1·30,55/488,3 = 459,9 кВ

Установим две группы реакторов 3∙РОДЦ – 60

Qат = Q2 + Qсис - Qp =353,3 + 91,8 – 2·175,5 = 94,2 МВAp

U’2 = 488,3 – Qат·Xt2 /488,3= 488,3 – 94,2·30,55/488,3 = 482,3 кВ

Uсн = U’2·220/500 = 221,8 кВ

Q’ат = Qат - 94,2 - ·30,55= 55,8 МВAp

Рн = 10 МВт

Ратс = Рпс - Рн = 529 – 10 = 519 МВт

Qатс = Ратс· tgφпс =519·tg(arccos(0.96))=151,4 МВAp

Q’нн = Q’ат - Qатс = 55,8 – 151,4 = -95,5 МВAp

Qнн = Q’нн – (Q’нн/ U’2)2· Xtн2 = -97,8 МВAp

Uнн = (U’2 - Q’нн ·Xtн2 /U’2)·(10.5/500) = 10,49 кВ


Необходима установка двух СК типа КСВБ0-50-11.

Таким образом для обеспечения всех режимов необходима дополнительная установка 9 групп реакторов 9x3xРОДЦ-60/500 и двух синхронных компенсаторов типа КСВБ0-50-11.


Таблица 2.1.

Размещение КУ


Начало линии1

Конец линии1

ПС

Начало линии2

Конец линии2

Режим НБ

3x3xРОДЦ-60/500


2 х КСВБ0-50-11

2 x3xРОДЦ-60/500


Режим НМ

2 x3xРОДЦ-60/500

1 x3xРОДЦ-60/500

2 х КСВБ0-50-11

2 x3xРОДЦ-60/500


Режим ПАВ



2 х КСВБ0-50-11



Синхронизация на шинах ПС

1 x3xРОДЦ-60/500


2 х КСВБ0-50-11

2 x3xРОДЦ-60/500

2 x3xРОДЦ-60/500

Синхронизация на шинах ГЭС

1 x3xРОДЦ-60/500

2 x3xРОДЦ-60/500

2 х КСВБ0-50-11



 

Выводы: спроектирована электропередача от строящейся ГЭС, мощностью 1020 МВт в энергосистему, имеющую оперативный резерв 320 МВт, с промежуточной подстанцией, мощностью 520 МВт. Было выбрано два варианта электропередачи, удовлетворяющих условиям надежного снабжения электроэнергией потребителей промежуточной подстанции, а так же приемной системы, обеспечиваемых электроэнергией от ГЭС. Для этих двух вариантов выбрали номинальные напряжения и сечения проводов участков электропередачи, схемы электрических соединений передающей станции и промежуточной подстанции. Затем из двух вариантов выбрали первый. Критерием определения рационального варианта является минимум приведенных затрат (З1 = 4800 тыс. руб. З2 = 6139 тыс. руб.). Для выбранной электропередачи рассчитали основные режимы: наибольшей передаваемой мощности, наименьшей передаваемой мощности, послеаварийный. Так же рассчитали режимы синхронизации на шинах промежуточной подстанции и на шинах передающей станции. В результате расчета режимов получили, что для обеспечения всех режимов необходима дополнительная установка 9 групп реакторов 9x3xРОДЦ-60/500 и двух синхронных компенсаторов типа КСВБ0-50-11.



3. РАЗВИТИЕ РАЙОННОЙ ЭЛЕКТРИЧЕСКОЙ СЕТИ


3.1. Анализ исходных данных


3.1.1 Характеристика электрифицируемого района

Сеть будем проектировать в Западной Сибири. Данному региону соответствует I район по гололёду и II по ветру. Регион находится в умеренном климатическом поясе. Среднегодовое количество осадков от 400 до 1000 мм. Максимальная температура воздуха +43°С, минимальная -37°С. В регионе развиты такие отрасли промышленности как машиностроение, металлургия и металлообработка, легкая, химическая, строительных материалов и пищевая промышленности.


3.1.2 Характеристика потребителей

В соответствии с заданием на проектирование развития сети районная электрическая сеть будет обеспечивать шесть пунктов потребителей электроэнергии, которые характеризуются следующими данными:

- в пункте 1 содержится 50% потребителей – I категории, 30% - II категории, 20% - III категории. Коэффициент мощности нагрузки равен 0,91. Пик нагрузки приходится на период времени с 16 до 20 часов и составляет 79 МВт;

- в пункте 2 содержится 70% потребителей – I категории, 20% - II категории, 10% - III категории. Коэффициент мощности нагрузки равен 0,9. Пик нагрузки приходится на период времени с 4 до 12 часов и составляет 33 МВт;

- в пункте 3 содержится 40% потребителей – I категории, 30% - II категории, 30% - III категории. Коэффициент мощности нагрузки равен 0,91. Пик нагрузки приходится на период времени с 8 до 16 часов и составляет 20 МВт;

- в пункте 4 содержится 20% потребителей – I категории, 20% - II категории, 60% - III категории. Коэффициент мощности нагрузки равен 0,92. Пик нагрузки приходится на период времени с 4 до 12 часов и составляет 7 МВт;

- в пункте 5 содержится 10% потребителей – I категории, 40% - II категории, 750% - III категории. Коэффициент мощности нагрузки равен 0,9. Пик нагрузки приходится на период времени с 16 до 20 часов и составляет 11 МВт;

- в пункте 6 содержится 25% потребителей – I категории, 25% - II категории, 50% - III категории. Коэффициент мощности нагрузки равен 0,92. Пик нагрузки приходится на период времени с 8 до 16 часов и составляет 25 МВт.

Во всех пунктах находятся промышленные предприятия и коммунальные потребители, часть потребителей каждого из пунктов относится к I категории электроснабжения, для которых перерыв в электроснабжении допускается только на время автоматического восстановления питания, значит электроприемники должны питаться по двухцепным линиям.

Номинальное напряжение вторичных сетей всех пунктов – 10 кВ.


3.1.3 Характеристика источников питания

Источником питания ИП1 является мощная узловая подстанция. Она имеет следующие классы напряжений :220 кВ, 110 кВ и 35 кВ. Рассматриваемая сеть питается от напряжения класса 110 кВ.

В качестве источника питания ИП2 выступает мощная узловая подстанция 500/110/10 кВ.



3.2 Потребление активной и баланс реактивной мощности в проектируемой сети


3.2.1 Определение потребной району активной мощности и энергии

Потребная мощность сети равна сумме максимальной зимней нагрузки и потерь мощности, которые составляют примерно 5 % от суммарной максималь-ной зимней нагрузки.

 

По заданным графикам нагрузки найдем суммарную зимнюю максимальную активную мощность нагрузки путем графического суммирования нагрузки каждого пункта (см. приложение 5).

Наибольшая мощность 139 МВт с 8 до 12 часов.

Для всех пунктов летняя нагрузка составляет 50 % от зимней. Аналогично получим суммарный график нагрузки для лета (см. приложение 5).

Наименьшая мощность 30,5 МВт с 20 до 4 часов.

Принимаем график активной мощности источника питания ИП1 равной значению РИП сети до реконструкции, наибольшая мощность ИП1:

РИП1 = 90,6 МВт

Рассчитаем наибольшую активную мощность балансирующего источника питания ИП2(без учета потерь):


РИП2 = Р∑Зmax – РИП1 = 139 – 90,6 = 48,4 МВт


Найдем годовое потребление электроэнергии. Оно складывается из зимнего и летнего потребления с учётом числа суток:




Полученные результаты сведем в таблицу 3.1.



Таблица 3.1

Годовое потребление электроэнергии

№ пункта

1

2

3

4

5

6

Wзим, МВт

1074

501,6

272

106,4

149,6

340

Wлет, МВт

537,2

250,8

136

523,2

74,8

170

Wгод, МВт

303500

141700

76840

30060

42260

96050



3.2.2 Составление баланса реактивной мощности

Потребная реактивная мощность складывается из суммарной реактивной максимальной мощности нагрузки, потерь реактивной мощности в линиях, потерь реактивной мощности в трансформаторах, за вычетом зарядной мощности линий.


 ,


где  - потребная реактивная мощность,

  - суммарная реактивная максимальная мощность нагрузки,

  - потери реактивной мощности в линиях,

  - потери реактивной мощности в трансформаторах,

  - зарядные мощности линий.

Найдем потери реактивной мощности в трансформаторах, которые составляют 10% от суммарной максимальной полной мощности нагрузки. Максимальная полная мощность – в период с 8 до 12 часов:


Найдем суммарную максимальную зимнюю реактивную мощность нагрузки, путем графического суммирования графиков нагрузки каждого пункта (см. приложение 5).

Наибольшая мощность 60,52 Мвар с 8 до 12 часов.

Для всех пунктов летняя нагрузка составляет 50 % от зимней. Аналогично получим суммарный график нагрузки для лета (см. приложение 5).

Наименьшая мощность 14,03 Мвар с 20 до 4 часов.

Тогда получим:


Реактивной мощности, вырабатываемой системой, недостаточно для покрытия потребности потребителей, поэтому на всех пунктах необходима установка компенсирующих устройств.


Размещение КУ производим по условию равенства cosφ у потребителей.

Найдем cosφср. взв

 


Таблица 3.2

Расчет желаемой реактивной мощности в пунктах

№ пункта

№1

№2

№3

№4

№5

№6

0,456

0,484

0,456

0,426

0,484

0,426

40

33

20

7

11

25

24,9

10,94

6,06

1,91

3,65

7,133


Подберём необходимое число компенсирующих устройств для каждого пункта. Количество батарей должно быть кратным двум, лучше четырём.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.