Химия меди
Химия меди
Министерство Образования Республики Беларусь
Белорусский Национальный Технический Университет
Кафедра Химии
Реферат на тему:
Химия меди
Исполнитель: Кузьмич А.Н. гр. 104312
______________________
Руководитель: Медведев Д.И.
______________________
Минск - 2003
Содержание.
| | |стр. |
| |Введение |2 |
|1. |Историческая справка |4 |
|2. |Положение меди в периодической системе Д.И. Менделеева |5 |
|3. |Распространение в природе |6 |
|4. |Получение |8 |
|5. |Физические свойства |10 |
|6. |Химические свойства |11 |
|7. |Применение |16 |
|8. |Сплавы меди |18 |
|8.1 |Латуни |18 |
|8.2 |Оловянные бронзы |19 |
|8.3 |Алюминиевые бронзы |19 |
|8.4 |Кремнистые бронзы |20 |
|8.5 |Бериллиевые бронзы |21 |
|8.6 |Сплавы меди с никелем |21 |
| |Заключение |22 |
| |Литература |24 |
Введение.
Медь (лат. Cuprum) - химический элемент. Один из семи металлов,
известных с глубокой древности. По некоторым археологическим данным -
медь была хорошо известна египтянам еще за 4000 лет до н. э. Знакомство
человечества с медью относится к более ранней эпохе, чем с железом; это
объясняется с одной стороны более частым нахождением меди в свободном
состоянии на поверхности земли, а с другой сравнительной легкостью
получения ее из соединений. Особенно важна медь для электротехники. По
электропроводности медь занимает второе место среди всех металлов, после
серебра. Однако в наши дни во всем мире электрические провода, на которые
раньше уходила почти половина выплавляемой меди, все чаще делают из
алюминия. Он хуже проводит ток, но легче и доступнее. Медь же, как и
многие другие цветные металлы, становится все дефицитнее. Если в 19 в.
медь добывалась из руд, где содержалось 6-9% этого элемента, то сейчас 5%-
ные медные руды считаются очень богатыми, а промышленность многих стран
перерабатывает руды, в которых всего 0,5% меди.
Медь - необходимый для растений и животных микроэлемент. Основная
биохимическая функция меди – это участие в ферментативных реакциях в
качестве активатора или в составе медьсодержащих ферментов. Количество меди
в растениях колеблется от 0,0001 до 0,05 % (на сухое вещество) и зависит от
вида растения и содержания меди в почве. В растениях медь входит в состав
ферментов-оксидаз и белка пластоцианина. В оптимальных концентрациях медь
повышает холодостойкость растений, способствует их росту и развитию. Среди
животных наиболее богаты медью некоторые беспозвоночные (у моллюсков и
ракообразных в гемоцианине содержится 0,15-0,26 % меди). Поступая с пищей,
медь всасывается в кишечнике, связывается с белком сыворотки крови -
альбумином, затем поглощается печенью, откуда в составе белка
церулоплазмина возвращается в кровь и доставляется к органам и тканям.
Содержание меди у человека колеблется (на 100 г сухой массы) от 5 мг в
печени до 0,7 мг в костях, в жидкостях тела - от 100 мкг (на 100 мл) в
крови до 10 мкг в спинномозговой жидкости; всего меди в организме взрослого
человека около 100 мг. Медь входит в состав ряда ферментов (например,
тирозиназы, цитохромоксидазы), стимулирует кроветворную функцию костного
мозга. Малые дозы меди влияют на обмен углеводов (снижение содержания
сахара в крови), минеральных веществ (уменьшение в крови количества
фосфора) и др. Увеличение содержания меди в крови приводит к превращению
минеральных соединений железа в органические, стимулирует использование
накопленного в печени железа при синтезе гемоглобина.
При недостатке меди злаковые растения поражаются так называемой болезнью
обработки, плодовые - экзантемой; у животных уменьшаются всасывание и
использование железа, что приводит к анемии, сопровождающейся поносом и
истощением. Применяются медные микроудобрения и подкормка животных солями
меди. Отравление медью приводит к анемии, заболеванию печени, болезни
Вильсона. У человека отравление возникает редко благодаря тонким механизмам
всасывания и выведения меди. Однако в больших дозах медь вызывает рвоту;
при всасывании меди может наступить общее отравление (понос, ослабление
дыхания и сердечной деятельности, удушье, коматозное состояние).
1. Историческая справка.
Медь относится к числу металлов, известных с глубокой древности. Раннему
знакомству человека с медью способствовало то, что она встречается в
природе в свободном состоянии в виде самородков, которые иногда достигают
значительных размеров. Медь и её сплавы сыграли большую роль в развитии
материальной культуры. Благодаря лёгкой восстановимости окислов и
карбонатов, медь была, по-видимому, первым металлом, который человек
научился восстановлять из кислородных соединений, содержащихся в рудах.
Древняя Греция и Рим получали медь с острова Кипра (Cyprum), откуда и
название ее Сuprum.
В древности для обработки скальной породы её нагревали на костре и
быстро охлаждали, причём порода растрескивалась. Уже в этих условиях были
возможны процессы восстановления. В дальнейшем восстановление вели в
кострах с большим количеством угля и с вдуванием воздуха посредством труб и
мехов. Костры окружали стенками, которые постепенно повышались, что привело
к созданию шахтной печи. Позднее методы восстановления уступили место
окислительной плавке сульфидных медных руд с получением промежуточных
продуктов - штейна (сплава сульфидов), в котором концентрируется медь, и
шлака (сплава окислов).
2. Положение меди в периодической системе Д.И. Менделеева.
Медь (Cuprum), Сu — химический элемент побочной подгруппы первой группы
периодической системы элементов Д.И. Менделеева. Порядковый номер 29,
атомная масса 63,54. Распределение электронов в атоме меди —
Is22s22p63s23p63d104s1.
Природная медь состоит из смеси 2-х стабильных изотопов с массовыми
числами 63 (69,1%) и 65 (30,9%). Сечение захвата тепловых нейтронов атомов
меди 3,59-10-28 м-2. Путем бомбардировки никеля протонами или дейтронами
искусственно получают радиоактивные изотопы меди 61Сu и 64Сu с периодами
полураспада 3,3 и 12,8 ч соответственно. Эти изотопы обладают высокой
удельной активностью и используются в качестве меченых атомов.
В химическом отношении медь занимает промежуточное положение между
элементами первой плеяды VIII группы и щелочными элементами I группы
периодической системы. Ниже приведены значения потенциалов ионизации атомов
меди (в эВ):
|1-й |
|2-й |
|3-й |
|4-й |
|5-й |
|6-й |
|7-й |
|8-й |
| |
|7,72 |
|20,29 |
|36,83 |
|58,9 |
|82 |
|106 |
|140 |
|169 |
| |
Заполненная d-оболочка меди менее эффективно экранирует s-электрон от
ядра, чем оболочка инертного газа, поэтому первый потенциал ионизации меди
выше, чем у щелочных металлов. Так как в образовании металлической связи
принимают участие и электроны d-оболочки, теплота испарения и температура
плавления меди значительно выше, чем у щелочных металлов, что обусловливает
более «благородный» характер меди по сравнению с последними. Второй и
третий потенциалы ионизации меньше, чем у щелочных металлов, что в
значительной степени объясняет проявление свойств меди как переходного
элемента, который в степени окисления II и III имеет парамагнитные свойства
окрашенных ионов и комплексов. Медь(I) также образует многочисленные
соединения по типу комплексов переходных металлов (табл. 1).
Таблица 1
Состояние окисления и стереохимия соединений меди.
|Состояние |Координационное |Геометрия |Примеры |
|окисления |число | |соединений |
|Cu(I) d10 |2 |Линейная |Cu2O |
| |3 |Плоская |K[Cu(CN)2] |
| |4 |Тетраэдр |Cu(I) |
|Cu(II) d9 |4 |Тетраэдр (искажённый) |Cs[CuCl4] |
| |5 |Тригональная бипирамида|[Cu(Dipy)2I]+ |
| |5 |Квадратная пирамида |[Cu(ДМГ)2]2(тв)|
| |4 |Квадрат |CuO |
| |6 |Октаэдр (искажённый) |K2CuF4, CuCl2 |
|Cu(III) d8 |4 |Квадрат |KCuO2 |
| |6 |Октаэдр |K3CuF6 |
П р и м е ч а н и е. Dipy – дипиридил; ДМГ – диметилглиоксим.
3. Распространение в природе.
Среднее содержание меди в земной коре 4,7-10-3 % (по массе), в нижней
части земной коры, сложенной основными породами, её больше (1-10-2 %), чем
в верхней (2-10-3 %), где преобладают граниты и другие кислые изверженные
породы. Медь энергично мигрирует как в горячих водах глубин, так и в
холодных растворах биосферы; сероводород осаждает из природных вод
различные сульфиды меди, имеющие большое промышленное значение. Среди
многочисленных минералов меди преобладают сульфиды, фосфаты, сульфаты,
хлориды, известны также самородная медь, карбонаты и окислы.
Медь - важный элемент жизни, она участвует во многих физиологических
процессах. Среднее содержание меди в живом веществе 2-10-4 %, известны
организмы - концентраторы меди. В таёжных и других ландшафтах влажного
климата медь сравнительно легко выщелачивается из кислых почв, здесь
местами наблюдается дефицит меди и связанные с ним болезни растений и
животных (особенно на песках и торфяниках). В степях и пустынях (с
характерными для них слабощелочными растворами) медь малоподвижна; на
участках месторождений меди наблюдается её избыток в почвах и растениях,
отчего болеют домашние животные.
В речной воде очень мало меди, 1-10-7 %. Приносимая в океан со стоком
медь сравнительно быстро переходит в морские илы. Поэтому глины и сланцы
несколько обогащены медью (5,7-10-3 %), а морская вода резко недосыщена
медью (3-10-7 %).
В морях прошлых геологических эпох местами происходило значительное
накопление меди в илах, приведшее к образованию месторождений (например,
Мансфельд в Германии). Медь энергично мигрирует и в подземных водах
биосферы, с этими процессами связано накопление руд меди в песчаниках.
Медь образует до 240 минералов, однако лишь около 40 имеют промышленное
значение.
Различают сульфидные и окисленные руды меди. Промышленное значение
имеют сульфидные руды, из которых наиболее широко используется медный
колчедан (халькопирит) CuFeS2. В природе он встречается главным образом в
смеси с железным колчеданом FeS2 и пустой породой, состоящей из оксидов Si,
Al, Ca и др. Часто сульфидные руды содержат примеси благородных металлов
(Аи, Ag), цветных и редких металлов (Zn, Pb, Ni, Co, Mo и др.) и рассеянных
элементов (Ge и др.).
Содержание меди в руде обычно составляет 1—5%, но благодаря легкой
флотируемости халькопирита его можно обогащать, получая концентрат,
содержащий 20% меди и более [1845]. Наиболее крупные запасы медных руд
сосредоточены главным образом на Урале, в Казахстане, Средней Азии, Африке
(Катанта, Замбия), Америке (Чили, США, Канада).
4. Получение.
Медные руды характеризуются невысоким содержанием меди. Поэтому перед
плавкой тонкоизмельчённую руду подвергают механическому обогащению; при
этом ценные минералы отделяются от основной массы пустой породы; в
результате получают ряд товарных концентратов (например, медный, цинковый,
пиритный).
В мировой практике 80 % меди извлекают из концентратов
пирометаллургическими методами, основанными на расплавлении всей массы
материала. В процессе плавки, вследствие большего родства меди к сере, а
компонентов пустой породы и железа к кислороду, медь концентрируется в
сульфидном расплаве (штейне), а окислы образуют шлак. Штейн отделяют от
шлака отстаиванием.
На большинстве современных заводов плавку ведут в отражательных или в
электрических печах. В отражательных печах рабочее пространство вытянуто в
горизонтальном направлении; площадь подачи 300 м2 и более (30 м; 10 м),
необходимое для плавления тепло получают сжиганием углеродистого топлива
(естественный газ, мазут, пылеуголь) в газовом пространстве над
поверхностью ванны. В электрических печах тепло получают пропусканием через
расплавленный шлак электрического тока (ток подводится к шлаку через
погруженные в него графитовые электроды).
Однако и отражательная, и электрическая плавки, основанные на внешних
источниках теплоты, - процессы несовершенные. Сульфиды, составляющие
основную массу медных концентратов, обладают высокой теплотворной
способностью. Поэтому всё больше внедряются методы плавки, в которых
используется теплота сжигания сульфидов (окислитель - подогретый воздух,
воздух, обогащенный кислородом, или технический кислород). Мелкие,
предварительно высушенные сульфидные концентраты вдувают струей кислорода
или воздуха в раскалённую до высокой температуры печь. Частицы горят во
взвешенном состоянии (кислородно-взвешенная плавка). Можно окислять
сульфиды и в жидком состоянии; эти процессы усиленно исследуются в СССР и
за рубежом (Япония, Австралия, Канада) и становятся главным направлением в
развитии пирометаллургии сульфидных медных руд.
Богатые кусковые сульфидные руды (2-3 % Cu) с высоким содержанием серы
(35-42 % S) в ряде случаев непосредственно направляются на плавку в шахтных
печах (печи с вертикально расположенным рабочим пространством). В одной из
разновидностей шахтной плавки (медно-серная плавка) в шихту добавляют
мелкий кокс, восстановляющий в верхних горизонтах печи SO2 до элементарной
серы. Медь в этом процессе также концентрируется в штейне.
Получающийся при плавке жидкий штейн (в основном Cu2S, FeS) заливают в
конвертер - цилиндрический резервуар из листовой стали, выложенный изнутри
магнезитовым кирпичом, снабженный боковым рядом фурм для вдувания воздуха и
устройством для поворачивания вокруг оси. Через слой штейна продувают
сжатый воздух. Конвертирование штейнов протекает в две стадии. Сначала
окисляется сульфид железа, и для связывания окислов железа в конвертер
добавляют кварц; образуется конвертерный шлак. Затем окисляется сульфид
меди с образованием металлической меди и SO2. Эту черновую медь разливают в
формы. Слитки (а иногда непосредственно расплавленную черновую медь) с
целью извлечения ценных спутников (Au, Ag, Se, Fe, Bi и других) и удаления
вредных примесей направляют на огневое рафинирование. Оно основано на
большем, чем у меди, сродстве металлов-примесей к кислороду: Fe, Zn, Co и
частично Ni и другие в виде окислов переходят в шлак, а сера (в виде SO2)
удаляется с газами. После удаления шлака медь для восстановления
растворённой в ней Cu2O "дразнят", погружая в жидкий металл концы сырых
берёзовых или сосновых брёвен, после чего отливают его в плоские формы. Для
электролитического рафинирования эти слитки подвешивают в ванне с раствором
CuSO4, подкислённым H2SO4. Они служат анодами. При пропускании тока аноды
растворяются, а чистая медь отлагается на катодах - тонких медных листах,
также получаемых электролизом в специальных матричных ваннах. Для выделения
плотных гладких осадков в электролит вводят поверхностно-активные добавки
(столярный клей, тиомочевину и другие). Полученную катодную медь промывают
водой и переплавляют. Благородные металлы, Se, Te и другие ценные спутники
меди концентрируются в анодном шламе, из которого их извлекают специальной
переработкой.
Наряду с пирометаллургическими применяют также гидрометаллурги-ческие
методы получения меди (преимущественно из бедных окисленных и самородных
руд). Эти методы основаны на избирательном растворении медьсодержащих
минералов, обычно в слабых растворах H2SO4 или аммиака. Из раствора меди,
либо осаждают железом, либо выделяют электролизом с нерастворимыми анодами.
Весьма перспективны применительно к смешанным рудам комбинированные
гидрофлотационные методы, при которых кислородные соединения меди
растворяются в сернокислых растворах, а сульфиды выделяются флотацией.
Получают распространение и автоклавные гидрометаллургические процессы,
идущие при повышенных температурах и давлении.
5. Физические свойства.
Техническая медь — металл красного, в изломе розового цвета, при
просвечивании в тонких слоях — зеленовато-голубой. Имеет
гранецентрированную кубическую решетку с параметром а = 0,36074 нм,
Страницы: 1, 2
|