Платина
|Коренная |76.7 |
|Средний состав аффинируемой платины |78.4 |
В канадских месторождениях платина встречается в виде сперилита PtAs2,
куперита PtS и некоторых более редких минералов. Однако большая часть
платиновых металлов находится в сульфидах в виде твердого раствора.
Содержание платины в рудах достигает 1.5-2.0 грамма на 1 тонну руды.
Примерно такой же минералогический состав имеют южноафриканские руды,
кроме того здесь найдена самородная платина и ферроплатина.
Каждому типу руд и их минеральным разновидностям свойственны свои
особенности платиновой минерализации, обусловленные различной
обогащенностью платиновыми металлами, различным соотношением платины,
палладия, иридия, родия, рутения и осмия, а также различием форм нахождения
металлов.
Многообразие типов руд и различие форм нахождения платиновых металлов в
медно-никелевых рудах вызывает большие сложности с полнотой извлечения
платиновых металлов в готовые концентраты, направляемые в металлургическую
переработку.
Получение платиновых металлов из россыпей.
Россыпи платиновых металлов, образованные в результате разрушения
коренных пород, известны во многих странах, но промышленные запасы в
основном сосредоточены в Колумбии, Бразилии и Южной Африке.
Процесс извлечения платиновых металлов из россыпей сводится к двум
группам операций: добыче песков и их обогащению гравитационными методами.
Пески можно добывать подземными и открытыми способами; как правило,
применяют открытые горные работы, выполняемые в два этапа: вскрыша пустой
породы и добыча платинусодержащих песков. Добычу песков обычно совмещают с
их гравитационным обогащением в одном агрегате, например, драге.
Добытая горная масса из дражных черпаков поступает в промывочную бочку,
где осуществляется дезинтеграция и грохочение. Процесс дезинтеграции горной
массы в бочке происходит посредством механического разделения и размыва ее
водой при перекатывании породы внутри бочки и орошении напорной струей
воды. Порода при этом разделяется на два продукта: верхний (галька, крупные
камни, неразмытые камни глины) не содержит платины и направляется в отвал;
нижний поступает последовательно на шлюзы, отсадочные машины и
концентрационные столы. В результате обогащения получается шлиховая
платина, содержащая до 70-90 % платиновых металлов. Ее направляют на
аффинаж.
Извлечение платины при обогащении сульфидных платинусодержащих руд.
Технологические схемы извлечения платиновых металлов при обогащении
вкрапленных руд определяются формами нахождения этих металлов в данном
месторождении. Если платиновые металлы представлены самородной платиной и
ферроплатиной, то в технологическую схему обогащения входит операция по
получению гравитационного концентрата, содержащего повышенные концентрации
платиновых металлов. Если в рудах платиновые металлы, в частности платина,
находятся в виде магнитной ферроплатины, то обычно применяют магнитную
сепарацию с последующей переработкой богатого продукта либо в отдельном
цикле, либо совместно с никелевым концентратом в пирометаллургическом
процессе. Первую схему применяют, например, для обогащения
платинусодержащих руд Южной Африки.
Технологический процесс гравитационно-флотационного обогащения
южноафриканских руд включает дробление исходной руды с последующим тонким
измельчением ее в две стадии в шаровых мельницах, работающих в замкнутом
цикле с гидроциклонами.
Свободные зерна самородной платины отделяют в цикле измельчения на
шлюзах с кордероевым покрытием. Полученные концентраты подвергают
перечистке на концентрационных столах с получением гравитационного
концентрата, содержащего 30-35 % Pt, 4-6 % Pd и 0.5 % других металлов
платиновой группы.
Пульпу после выделения гравитационного концентрата сгущают и направляют
на флотацию. Конечным продуктом флотации является концентрат, содержащий:
3.5-4.0% Ni, 2.0-2.3% Cu, 15.0% Fe, 8.5-10.0% S; сумма платиновых металлов
110-150 г/т. Этот концентрат поступает в металлургическую переработку.
Извлечение платиновых металлов в цикле обогащения достигает 82-85 %.
Бедная вкрапленная руда месторождения Садбери подвергается дроблению,
измельчению с последующей флотацией и магнитной сепарацией. В результате
получается никелевый концентрат, содержащий платиновые металлы, медный
концентрат, в состав которого входят золото и серебро, и пирротиновый
концентрат, практически не имеющий благородных металлов.
При обогащении вкрапленных руд отечественных месторождений получаются
два концентрата: медный и никелевый. Значительные потери металлов-спутников
с хвостами обогащения объясняются тем, что они ассоциированы с пирротином,
уходящим в отвал.
Поведение платины при металлургической переработке сульфидных
платинусодержащих руд и концентратов.
Основные технологические операции переработки медно-никелевых концентратов.
При обогащении сульфидных медно-никелевых руд получаются медный и
никелевый концентраты, перерабатываемые по сложной технологической схеме
(см. Приложение №1, рис.1.)
Никелевый концентрат после агломерации или окатывания плавят в
электротермических (реже отражательных) печах, в результате чего получают
штейн и шлак. Шлак на некоторых заводах после грануляции и измельчения
подвергают флотации для извлечения взвешенных частиц штейна, содержащих
платиновые металлы. Штейн, концентрирующий основную массу платиновых
металлов, проходит операцию конвертирования на обеднительную электроплавку,
и файнштейна, который медленно охлаждается, дробится, измельчается и
флотируется с получением медного концентрата, перерабатываемого в медном
производстве, и никелевого, направляемого на обжиг в печах кипящего слоя.
При охлаждении файнштейна компоненты претерпевают кристаллизацию в
следующей последовательности: первичные кристаллы сульфида меди ( двойная
эвтектика, состоящая из сульфидов меди и никеля, ( тройная эвтектика,
состоящая из сульфидов меди, никеля и медно-никелевого металлического
сплава. Металлический сплав, выход которого на различных заводах составляет
8-15 %, коллектирует до 95 % платиновых металлов, содержащихся в
файнштейне. Поэтому на некоторых заводах металлическую фазу выделяют
магнитной сепарацией и направляют на восстановительную плавку с получением
анодов.
Полученную после обжига никелевого концентрата закись подвергают
восстановительной плавке на аноды в дуговых электропечах. Аноды подвергают
электрорафинированию; выпадающий на аноде шлам концентрирует основную массу
платиновых металлов.
Платиновые металлы, находящиеся в медном концентрате, после обжига,
отражательной плавки, конвертирования и огневого рафинирования
концентрируются в медных анодах, после электрорафинирования переходят в
медный шлам. Медный и никелевый шламы обогащают с получением концентратов,
содержащих до 60 % платиновых металлов. Эти концентраты направляют на
аффинаж.
В последние годы для переработки медных и никелевых концентратов
предложены высокоинтенсивные автогенные процессы: плавка в жидкой ванне,
взвешенная плавка, кислородно-взвешенная плавка и др. Применяют также
гидрометаллургическую переработку платинусодержащих сульфидных концентратов
с использованием окислительного автоклавного выщелачивания, соляно- и
сернокислое выщелачивание, хлорирование при контролируемом потенциале и
другие процессы.
Таким образом, платиновые металлы в процессе пиро- и
гидрометаллургической переработки подвергают воздействию окислителей при
температурах до 1200-1300 °С, действию кислот при высоких окислительных
потенциалах среды, анодному растворению при значительных
электроположительных потенциалах. Поэтому необходимо рассмотреть поведение
этих металлов в различных процессах с целью создания условий для повышения
извлечения их в принятых и проектируемых технологических схемах переработки
платинусодержащих сульфидных медно-никелевых концентратов.
Физико-химические основы поведения платины при переработке сульфидного
сырья.
Пирометаллургические процессы.
При переработке сульфидных руд пирометаллургическими способами
благородные металлы частично теряются с отвальными шлаками, пылями и
газами. Для теоретической оценки возможности таких потерь и создания
условий для их уменьшения большой интерес представляет зависимость
свободных энергий образования оксидов и сульфидов благородных металлов от
температур.
Таблица 5.
Свободные энергии окисления сульфидов.
| |Уравнение |(GТ, Дж/моль О2 при |
|Реакция |свободной |температуре, К |
| |энергии |1173 1273 |
| |(GТ, Дж/моль |1573 |
|PtS(тв)+2O2(г)=PtO2(тв)+SO2|-228000+87.5·Т| - -227 |
|(г) | |-214 |
|PtS(тв)+2O2(г)=PtO2(г)+SO2(|-17600-7.5·Т |-26 -27 |
|г) | |-29 |
Агломерация. В процессе агломерации концентрат подвергается окускованию
и частичной десульфурации при 1000-1100 °С, что сопровождается процессами
разложения высших сульфидов и окисления получившихся продуктов кислородом
воздуха.
Электроплавка сульфидного никель-медного концентрата осуществляется в
электропечи, куда поступает концентрат, содержащий в зависимости от
месторождения от 20 до 150 г/т платиновых металлов. В шихту вместе с
окатышами и агломератом добавляют оборотные продукты и, в зависимости от
состава исходного сырья, известняк или песчаник. Температура расплава на
границе с электродом достигает 1300-1400 °С. Пустая порода ошлаковывается;
шлак сливают, гранулируют. На некоторых предприятиях его подвергают
измельчению и флотации с целью более полного извлечения благородных
металлов. Содержание благородных металлов в шлаке в зависимости от режима
плавки и состава концентрата колеблется от 0.3 до 1.0 г/т. Штейн
концентрирует основную массу платиновых металлов. Содержание их в штейне
колеблется в пределах 100-600 г/т.
Процесс плавки протекает в основном в восстановительном режиме, поэтому
потери платиновых металлов в этом процессе определяются механическими
потерями мелких корольков штейна, взвешенных в шлаковой фазе. Эти потери
могут быть устранены флотацией шлаков с извлечением платиновых металлов в
сульфидный концентрат. При этом извлечение платины может достигать более
99.0 %.
Конвертирование. Полученный при электроплавке штейн подвергается
конвертированию. Конвертирование, цель которого состоит в возможно более
полном удалении сульфида железа из никель-медных штейнов, осуществляется
при температуре около 1200 °С. Процесс протекает в сульфидных расплавах,
где активность платиновых металлов очень невелика. Поэтому в процессе
конвертирования в шлаковую фазу в очень незначительных количествах
переходит платина (1.4 |[PtCl6]2- при (а>1.4 |
| |В. |В. |
При содержании в сплавах 0.01-1.0 % платинового металла, он замещает в
кристаллической решетке сплава атомы никеля или меди, не образуя
самостоятельных структур.
Известно, что в присутствии сульфидной, оксидной и металлической фаз
платиновые металлы концентрируются в металлической фазе. Поэтому в
никелевых и медных промышленных анодах, содержащих в качестве примесей
сульфидные и оксидные фазы, платиновые металлы равномерно распределены в
металлической фазе, образуя кристаллическую решетку замещения. Это приводит
к образованию в решетке сплава микроучастков (зон) с более положительным
равновесным потенциалом. Металлы в этих зонах не растворяются при
потенциале работающего анода и выпадают в нерастворимый осадок - шлам. В
случае повышения потенциала анода до величины, соответствующей потенциалу
ионизации платиновых металлов, начинается переход этих металлов в раствор.
Степень перехода будет увеличиваться, если в растворе платиновые металлы
образуют стойкие комплексные соединения.
Таким образом поведение платиновых металлов при электрохимическом
растворении анодов будет определяться потенциалом анода, составом раствора
и природой растворяемого сплава.
Переработка платинусодержащих шламов.
При электролитическом рафинировании меди и никеля платиновые металлы
концентрируются в анодных шламах, где их содержание в зависимости от
состава исходных руд колеблется в широких пределах, от десятых долей до
нескольких процентов.
В соответствии с основными теоретическими положениями в шламы при
растворении анодов практически без изменения переходят оксиды и сульфиды
цветных металлов. Поэтому основными фазовыми составляющими никелевого шлама
являются сульфиды меди и никеля ((-Cu2S, (-Cu2S, Ni3S2, NiS), оксиды (NiO,
CuO, Fe2O3, Fe3O4), ферриты (NiFe2O4, CuFeO2). Платиновые металлы в шламах
представлены рентгеноаморфными металлическими формами.
Непосредственная переработка бедных по содержанию благородных металлов
продуктов, в состав которых входят значительные количества цветных
металлов, железа и серы, на аффинажных предприятиях не производится.
Поэтому анодные шламы предварительно обогащают различными пиро- и
гидрометаллургическими методами с получением концентратов платиновых
металлов. Технологические схемы обогащения шламов, применяемые на различных
заводах, различаются между собой.
Существующие схемы построены на селективном растворении цветных
металлов, содержащихся в шламах. Благородные металлы при этом остаются в
нерастворенном осадке, который направляют на аффинажное производство.
Раствор, содержащий сульфаты цветных металлов, идет в основное
производство. Во многих случаях для улучшения растворения цветных металлов
шламы проходят предварительную пирометаллургическую подготовку (обжиг,
спекание, восстановительную плавку и т.д.).
Переработка шламов методом сульфатизации.
Метод основан на том, что сульфиды, оксиды и другие соединения цветных
металлов при взаимодействии с концентрированной серной кислотой при
температуре выше 150°С образуют сульфаты, которые при последующем
выщелачивании переходят в раствор:
MeS+4H2SO4=MeSO4+4H2O+4SO2;
MeO+H2SO4=MeSO4+H2O;
Me+2H2SO4=MeSO4+2H2O+SO2;
Me2S+6H2SO4=2MeSO4+6H2O+5SO2.
Благородные металлы должны концентрироваться в нерастворимом остатке.
Технологическая схема сульфатизации шлама приведена ниже:
Влажный шлам
H2SO4
Репульпация
Сульфатизация
Выщелачивание
Фильтрация
Раствор Концентрат
в электролиз
никеля Щелочная
разварка
Фильтрация
Концентрат Раствор
платиновых на сброс
металлов
Согласно схеме, шлам репульпируется в серной кислоте при 60-90 °С в
течение 4-6 ч. При этом в раствор переходит до 30 % никеля и меди.
Благородные металлы полностью остаются в твердом остатке, который
подвергают сульфатизации в течение 10-12 ч при температуре 250-300 °С.
Сульфаты цветных металлов и железа выщелачиваются водой, а твердый остаток
для удаления кремнекислоты обрабатывают в течение 4 ч 4 М раствором щелочи
при 80-90 °С. Твердый остаток, содержащий до 30 % палладия и платины,
направляют на аффинаж. Щелочный раствор после нейтрализации сбрасывают.
Эта схема имеет существенный недостаток - при температуре сульфатизации
выше 200 °С иридий, родий и рутений более, чем на 95 % переходят в раствор.
Поэтому предложен способ двойной сульфатизации (см. Приложение №1,
рис.2). Медный и никелевый шламы в принятых пропорциях поступают на первую
стадию сульфатизации, проводимую при 180-190 °С. Никель, медь, железо
более, чем на 99 % переходят в раствор. Платиновые металлы практически
полностью остаются в нерастворимом остатке. Концентрация платины в растворе
не превышает 0.01 мг/л.
Нерастворимый остаток более, чем в 8 раз обогащается платиновыми
металлами, тем не менее, содержание благородных металлов в нем недостаточно
для проведения аффинажных операций. Поэтому его подвергают второй
сульфатизации при 270-300 °С, Т:Ж=1:5, при механическом перемешивании в
течении 10-12 ч. Просульфатизированный материал выщелачивается водой при 80-
90 °С. При этом достигается дополнительное обогащение нерастворимого
остатка платиновыми металлами примерно в 2-3 раза.
Остаток после второй сульфатизации и выщелачивания подвергают
обескремниванию разваркой в 5 М растворе щелочи при 100 °С. Потери
благородных металлов со щелочным раствором не превышают 0.2 %. Этот раствор
после нейтрализации сбрасывают. Полученный концентрат содержит 40-45 %
платиноидов и идет на аффинаж.
Схема двойной сульфатизации обеспечивает достаточно высокое извлечение
всех платиновых металлов в продукты, пригодные для аффинажных операций.
Недостатками ее являются невысокая производительность сульфатизационного
оборудования.
Переработка шламов сульфатизирующим обжигом и электролитическим
растворением вторичных анодов.
На некоторых предприятиях обогащение шламов осуществляется с
использованием пирометаллургических операций. Одна из схем этого процесса
приведена на рис. 3., Приложение №1.
Шлам никелевого электролиза смешивают со шламом медного электролиза, из
которого предварительно удален селен, и эту смесь подвергают окислительно-
сульфатизирующему обжигу в печи с механическим перемешиванием. Обжиг
протекает в течении 10-14 ч при 550-600 °С. При этом сульфиды меди, никеля
и железа переходят в сульфаты. Платина находится в огарке в виде свободных
металлов.
Огарок после обжига выщелачивают 0.5-1.0 М H2SO4 при 80-90 °С и
механическом перемешивании. Сульфаты никеля, меди, железа переходят в
раствор. Остаток обогащается в 2.5-3.5 раза. Платина в растворах после
выщелачивания практически отсутствует.
Выщелочный огарок после сушки направляют на восстановительную плавку и
отливку анодов. Плавку ведут в электропечи при 1700 °С. Полученные шлаки
перерабатывают в обеднительных электропечах, а обедненные шлаки передают в
медное или никелевое производство. Аноды, обогащенные платиновыми
металлами, подвергают электролитическому растворению в сернокислом
электролите. Продуктами электролиза являются: анодный шлам, катодная медная
губка и никелевый раствор.
Страницы: 1, 2, 3
|