рефераты скачать

МЕНЮ


Амины

Амины

Амины.

Аминами называются органические производные аммиака, в котором один, два

или все три атома водорода замещены на углеводородные радикалы (

предельные, непредельные, ароматические).

Название аминов производят от названия углеводородного радикала с

добавлением окончания –амин или от названия соответствующего углеводорода с

приставкой амино-.

Примеры:

CH3 – NH2 CH3 – NH – C2H5

метиламин метилэтиламин мтилдифениламин

[pic]

фениламин

(анилин)

В зависимости от числа атомов водорода, замещенных в аммиаке на

углеводородные радикалы, различают первичные, вторичные и третичные амины:

R

R- NH2 R – NH – R’ R – N – R”

первичный амин вторичный амин третичный амин

Где R, R’, R’’ – углеводородные радикалы.

Первичные, вторичные и третичные амины можно получить, проводя

алкилирование (введение алкильного радикала) аммиака. При этом происходит

постепенное замещение атомов водорода аммиака на радикалы, и образуется

смесь аминов:

NH3 + CH3I --- CH3NH2 + HI

CH3NH2 + CH3I --- (CH3)2NH + HI

(CH3)2NH + CH3I --- (CH3)2N + HI

Обычно в смеси аминов преобладает один из них в зависимости от соотношения

исходных веществ.

Для получения вторичных и третичных аминов можно использовать реакцию

аминов с галогеналкилами:

(CH3)2NH + C2H5Br --- (CH3)2NC2H5 + HBr

Амины можно получить восстановлением нитросоединений. Обычно

нитросоединения подвергают каталитическому гидрированию водородом:

C2H5NO2 + 3H2 --- C2H5NH2 + 2H2O

Этот метод используется в промышленности для получения ароматических

аминов .

Предельные амины. При обычных условиях метил амин CH3NH2, диметиламин

(CH3)2NH, триметиламин (CH3)3N и этиламин C2H5NH2 – газы с запахом,

напоминающим запах аммиака. Эти амины хорошо растворимы в воде. Более

сложные амины – жидкости, высшие амины – твердые вещества.

Для аминов характерны реакции присоединения, в результате которых

образуются алкиламиновые соли. Например, амины присоединяют

галогеноводороды:

(CH3)2NH2 +HCl --- [(CH3)2NH3]Cl

хлорид этиламмония

(CH3)2NH + HBr --- [(CH3)2NH2]Br

бромид диметиламмония

(CH3)3N + HI --- [(CH3)3NH]I

иодид триметиламмония

Тритичные амины присоединяют галогенопроизводные углеводорода с

образованием тетраалкиламмониевых солей, например:

(C2H5)3N + C2H5I --- [(C2H5)4N]I

Алкиламониевые соли растворимы в воде и в некоторых органических

растворителях. При этом они диссоциируют на ионы:

[(C2H5)4N]I === [(C2H5)4N]+ + I-

В результате водные и неводные растворы этих солей проводят электрический

ток. Химическая связь в алкиламмониевых соединениях ковалентная,

образованная по донорно-акцепторному механизму:

Ион метиламмония

Как и аммиак, в водных растворах амины проявляют свойства оснований. В их

растворах появляются гидроксид-ионы за счет образования алкиламониевых

оснований:

C2H5NH2 + H2O === [C2H5NH3]+ + OH-

Щелочную реакцию растворов аминов можно обнаружить при помощи индикаторов.

Амины горят на воздухе с выделением CO2, азота и воды, например:

4(C2H5)2NH + 27O2 --- 16CO2 + 2N2 + 22H2O

Первичные, вторичные и третичные амины можно различить, используя азотную

кислоту HNO2. при взаимодействии этой кислоты с первичными аминами

образуется спирт и выделяется азот:

CH3 – NH2 + HNO2 --- CH3 – OH + N2 +H2O

Вторичные амины дают азотистой кислотой нитрозосоединения, которые имеют

характерный запах:

CH3 – NH2 – CH3 + HNO2 --- (CH3)2 – N==NO+H2O

Третичные амины не реагируют азотистой кислотой.

Анилин C6H5NH2 является важнейшим ароматическим амином. Он представляет

собой бесцветную маслянистую жидкость, которая кипит при температуре 184,4

0 С.

Анилин был впервые получен в XIX в. русским химиком-органиком Н. Н.

Зининым, который использовал реакцию восстановления нитробензола сульфидом

аммония (NH4)2S. В промышленности анилин получают каталитическим

гидрированием нитробензола с использованием медного катализатора:

C6H5 – NO2 + 3H2 -cu-- C6H5 – NH2 + 2H2O

Старый способ восстановления нитробензола, который потерял промышленное

значение, заключается в использовании в качестве восстановителя железа в

присутствии кислоты.

По химическим свойствам анилин во многом аналогичен предельным аминам,

однако по сравнению с ними является более слабым основанием, что

обусловлено влиянием бензольного кольца. Свободная электронная пора атома

азота, с наличием которой связаны основные свойства, частично втягивается в

П – электронную систему бензольного кольца:

Уменьшение электронной плотности на атоме азота снижает основные свойства

анилина. Анилин образует соли лишь с сильными кислотами. Например, с

хлороводородной кислотой он образует хлорид фениламмония:

C6H5NH2 + HCl --- [C6H5NH3]Cl

Азотная кислота образует с анилином диазосоединения:

C6H5 – NH2 + NaNO2 +2HCl --- [C6H5 – N+==N]Cl- + NaCl + 2H2O

Диазосоединения, особенно ароматические. Имеют большое значение в синтезе

органических красителей.

Некоторые особые свойства анилина обусловлены наличием в его молекуле

ароматического ядра. Так, анилин легко взаимодействует в растворах с хлором

и бромом, при этом происходит замещение атомов водорода в бензольном ядре,

находящихся в орто- и пара-положенияхк аминогруппе:

Анилин сульфируется при нагревании с серной кислотой, при этом образуется

сульфаниловая кислота:

Сульфаниловая кислота – важнейший промежуточный продукт при синтезе

красителей и лекарственных препаратов.

Гидрированием анилина в присутствии катализаторов можно получить

циклогексиламин:

C6H5 – NH2 + 3H2 --- C6H11 – NH2

Анилин используется в химической промышленности для синтеза многих

органических соединений, в том числе красителей и лекарств.

-----------------------

[pic]?–??/???†?????????????–??/???†??????????????

[pic]

[pic]

[pic]

[pic]


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.