рефераты скачать

МЕНЮ


Шпаргалка: Основные вопросы, объясняющие материаловедение

Возможное существования металлов в различных кристаллизационных модификациях называется полиморфизмом или аллотропией. При определенных условиях, атомы, образующие кристаллическую решетку одного типа, перестраиваются с образованием кристаллической решетки другого типа. По сути это кристаллизационный процесс, т.к. перенастройка решетки из одного типа в другой происходит при постоянной температуре. Однако, т.к. этот процесс имеет место в твердом состоянии его называют перекристаллизацией. К полиморфным металлам относятся: железо, олово, титан, марганец, кобольт.

14,15,16. Основы теории сплавов

Сплавом называют результат сплавления двух или более компонентов. Компоненты - это химически индивидуальные вещества образовывающие сплав.

Фаза – однородная часть системы отграниченная поверхностью раздела, при переходе через которую состав и свойства меняются скачкообразно.

В зависимости от характера компонентов, в сплаве могут образоваться хим. соединения, твердые растворы, механические смеси.

Хим. соединения.

Хим. соединения образуются при строго определенном количественном соотношении атомов. Для хим. соединения характерным является то, что кристаллическая решетка его отличается от кристаллической решетки сплавляемых компонентов. Если хим. соединение образуют металлы, то его называют интерметаллидом.


Твердые растворы

Они образуются в том случае, когда в кристаллической решетке одного компонента атомы замещаются на атомы другого компонента. Это твердые растворы замещения. Бывают твердые растворы внедрения, твердые растворы вычитания.

Твердые растворы замещения подразделяют на растворы неорганической и органической растворимости.

1) Основной металл, атомы в котором замещаются, называется растворителем.

2) Растворенный компонент.

Для того, чтобы получить твердый раствор неорганической растворимости замещаются атомы растворенного компонента. Необходимо выполнение трех условий:

а) Кристаллические решетки обоих компонентов являются изоморфными (однотипными)

б) Разница в атомных радиусах не должна превышать 14 или 15 %

в) Сплавляемие компоненты должны находиться в одной части периодической таблицы.

Невыполнение хотя бы одного из условий приводит к образованию твердых растворов ограниченной растворимости. К растворам, в которых атомы кристаллической решетки растворителя частично замещаются атомами растворимого компонента.

Твердые растворы внедрения.

Твердые растворы внедрения образуются, когда атомы одного компонента внедряются в пустоты или дефекты другого компонента. Такое возможно лишь в случае большого различия в атомных радиусах компонента. Твердые растворы внедрения образуют металлы с углеродом, азотом и твердые растворы замещения.


Твердые растворы вычитания

Они образуются на базе хим. соединений при недостатке атомом одного из компонентов. Отдельные узлы кристаллической решетки растворителя остаются вакантными.

Механические смеси

Некоторые компоненты при сплавлении не взаимодействуют с образованием хим. соединений или твердых растворов. Они образуют механические смеси. Механические смеси отличаются от хим. соединений и твердых растворов тем, что в них сохраняются типы решеток характерных для сплавляемых компонентов.

Диаграммы состояния двойных сплавов.

Диаграмма состояния представляет собой графическое отображение состояния сплава в зависимости от температуры, давления и концентрации. Диаграмма есть наглядное отображение устойчивых фаз при комнатной температуре. Мера устойчивости фаз определяется законом Гиббса или правилом фаз. Правило фаз устанавливает связь между числом степеней свободы, числом фаз и компонентов. Под числом степеней свободы понимают число внешних и внутренних факторов, которые можно изменять без изменения числа фаз в системе.

Правило фаз выполняется : с = к - ф + 2, где к – число компонентов, с – число степеней свободы, ф –число фаз, 2 – внешние факторы, т.е. изменяющаяся температура и давление, для сплавов принята несколько иная форма зависимости с = к -ф + 1 при условии постоянства давления.

С учетом правила фаз, как объясняющего процесс кристаллизации, кристаллизацию металлов, которая протекает при постоянной температуре можно объяснить следующим образом:

С12 =1-1+1=1С2=1-2+1=0 С2`-3=1-1+1=1


Для двухкомпонентных систем, которые мы будем рассматривать в случае с=0 процесс будет происходить при постоянной температуре, при с=1 или с=2 с изменением температуры по времени.

Диаграмма состояния для двух компонентной системы образует механическую смесь. Диаграмма состояния строятся в координатах температур (ось ординат) и концетрация компонентов (ось абсцисс).

17. Диаграмма состояния для двухкомпонентной системы, образующая механическую смесь.

Диаграммы состояния строятся в координатах t-оси ординат и концентрация компонентов – ось абсцисс. Линия АДВ – линия ликвидус. а представляет собой геометрическое место точек соответствующих температурам, при которых из жидкости начинают выпадать кристаллы, следовательно выше линии ликвидус сплав находится в жидком состоянии. Линия СДЕ называется солидус. Она представляет собой геометрическое место точек, соответствующих температурам, при которых жидкая фаза исчезает, следовательно ниже линии солидус сплав находится в твердом состоянии. Между линиями ликвидус и солидус сплав находится в жидко- твердом состоянии, и чем ниже температура относительно линии ликвидус, тем больше кристаллов и меньше жидкой фазы в сплаве. В точке Д из жидкости одновременно начинают выпадать кристаллы компонентов (фаз). Для диаграмм этого типа компонент и фаза являются синонимами. Для диаграмм другого типа необходимо говорить только о фазах, поскольку компонент и фаза не являются синонимами. Механическая смесь, состоящая из двух или более фаз, одновременно кристаллизующаяся в жидкости называется эвтептикой. Ниже точки Д на диаграмме структура представляет собой чисто эвтептической.

Правило отрезков

Посредством правила отрезков можно определить состав фаз в любой двухфазной области и количественное их соотношение. Правило отрезков состоит из двух частей. Первая часть: для того чтобы определить состав фаз через заданную точку в двухфазной области (точка соответствует конкретной температуре) проводят горизонтальную линию до пересечения с линиями, ограничивающими эту область. Проекция точек пересечения на ось концентрации даст нам состав фаз. Вторая часть: для того чтобы определить количество фаз через заданную точку проводят горизонтальную линию до пересечения с линией, ограничивающей эту область. Отрезки между заданной точкой и точками с соответствующим составом фаз обратно пропорциональны их количеству.

Правило фаз действует только в двухфазной области.

Диаграмма состояния для двухкомпонентной системы, образующие неограниченные твердые растворы

Два компонента: компонент А и компонент В.

АаВ - линия ликвидус.

АвВ – линия солидус.

Выше линии ликвидус сплав находится в жидком состоянии, ниже линии солидус – в твердом. При кристаллизации сплавов по диаграмме этого типа из жидкости будут выделятся не жидкие компоненты, а твердые растворы. Это обусловлено тем, что при сплавлении компонентов А и В образуется непрерывный ряд твердых растворов, т.е. растворов неограниченной растворимости. Отсюда - твердый раствор компонента В в компоненте А.

Диаграмма состояния для двухкомпонентной системы

Диаграмма состояния для двухкомпонентной системы, компоненты в которой образуют ограниченные твердые растворы, при этом в зависимости от типа диаграммы, диаграммы подразделяются на диаграммы с эвтептикой и диаграммы с перетептикой.

Диаграммы с эвтептикой: компоненты А и В. Фазы: жидкость ,;- твердый раствор компонента В в компоненте А; - твердый раствор компонента А в компоненте В.

Линия АВС – ликвидус. ADCFB – солидус, т.к. компоненты вступают во взаимодействие в твердом состоянии с правой и с левой стороны диаграммы будут находиться так называемые области ограниченной растворимости.

Линия ДК- указывает на то, что растворимость компонента В в А увеличивается с повышением температуры. Растворимость В в А при комп. Температуре будет соответственна на диаграммы. При температуре плавления эвтевтики точка Д на диаграмме. Противоположность растворимость компонента А в В не изменяется (линия FL) при комнатной температуре растворимость компонента А в В соответственна точке L при температуре плавления эвтевтики в точке L. Горизонтальная линия DCF соответствует температуре, при которой происходит эвтевтическая реакция.

Эвтевтика – это механическая смесь двух или более фаз одновременно кристаллизующихся из жидкости. В точке С происходит чисто эвтевтическая реакция, которая записывается как жидкость точки С распадается на  - твердый раствор точки Д и  - в точке F.

Кривые охлаждения.

С=К-Ф+1            С0-1=2-1+1=2С1-2=2-2+1=1

Диаграмма с перлитом

Компоненты А,В, жидкост, ,.

В отличие от эвтевтической реакции при перетептичекой реакции жидкость взаимодействует с кристаллами выпавшей фазы с образованием кристаллов новой фазы.


Диаграмма состояния с химическими соединениями

Под химическими соединениями понимеются соединения, образующиеся при строго определенном количественном соотношении атомов сплавляемых компонентов.

Различают диаграммы с устойчивыми химическими соединениями и не устойчивыми химическими соединениями.

Диаграмма состояния с устойчивым химическим соединением

Химическое соединение считается устойчивых, если оно плавится без разложения (предварительного).

Диаграмма состояния с неустойчивым химическим соединением

Характерным для неустойчивого химического соединения является то, что разлагается с повышением температуры.

26.Превращения в стали при нагреве.

Если эвтектоидную сталь, содержащую 0,8% углерода и имеющую структуру перлит нагреть выше Аc1 (7270С), то перлит превратится в аустенит с тем же содержанием углерода (0,8%).

Если доэвтектоидную сталь, содержащую, например, 0,4% углерода и имеющую структуру феррит + перлит, нагреть выше Аc1, то перлит превратится в аустенит. Феррит никаких изменений не претерпевает. Аустенит содержит 0,8% углерода, а феррит - 0,02% (точка P). По мере повышения температуры в интервале Аc1-Аc3, феррит будет растворятся в аустените и как бы "разбавлять" его по углероду и в момент достижения температуры Аc3 аустенит будет содержать 0,4% углерода, то есть столько, сколько углерода в стали.

Если заэвтектоидную сталь, содержащую, например, 1% углерода и имеющую структуру перлит + цементит, нагреть выше Аc1, то перлит превратится в аустенит с содержанием 0,8% углерода. Цементит никаких изменений не претерпевает и содержит 6,67% углерода. Дальнейший нагрев в интервале Аc1-Аc3 приводит к тому, что цементит будет растворятся в аустените и дополнительно насыщать аустенит углеродом. В момент достижения температуры Аcm аустенит будет содержать 1% углерода, то есть то количество углерода, которое в стали.

Линия 4 - линия начала превращений А в П. Между линиями 4 и 1 одновременно сосуществуют перлит и аустенит. В области между линиями 1 и 2 – аустенит + карбиды. В области 2, 3 - карбиды растворяются в аустените, но аустенит представляет собой твердый растаор с неравномерно распределенными атомами углерода, распределенными по всему объему. Выше нилии 3 происходит гомогенизация аустенита – линия начала превращения 4 горизонтальна, потому что нагрев распроятраняется, поэтому температура превращения практически не изменяется. Скорость превращения зависит от степени перенагрева относительно точки АС1 при перенагреве 1000 превращение перлита в аустенит пратикает практически мгновенно, что не позволяет фиксировать стадии, отраженные на представленной диаграмме изотермического образования аустенита.

Рост зерна аустенита при нагреве

В момент превращения перлита в аустенит образуется большое количество мелких зерен аустенита. При дальнейшем повышении температуры зерно аустенита начинает рости. Это обусловлено стремлением системы к уменьшению свободной энергии.

Различают наследственно мелкозернистые и наследственно крупнозернистые стали. Под наследственной зернистостью понимают склонность аустенитного зерна к росту, отсюда мелкозернистые стали обладают меньшей склонностью аустенитного зерна к росту в отличие от крупнозернистых сталей. Однако при достижении температур 900-950 0 С барьеры, предшествующие росту зерна в наследственно мелкозернистых сталях устраняются, и происходит более интенсивный рост зерна по сравнению с крупнозернистыми сталями. При превращении перлита в аустенит выделяют начальное зерно – размер зерна в момент превращения П в А. Наследственное зерно – склонность аустенитного зерна к росту. И действительное зерно – размер зерна, полученный при конкретных условиях. На свойства стали оказывает влияние момент действительного зерна. С увеличением размера зерна характеристики прочности, и особенно ударная вязкость снижается, а увеличиваются магнитные и электрические свойства и наоборот.

Перегрев и пережег

Если сталь выдерживать длительное время при высоких температурах, происходит интенсивный рост зерна. Это явление получило название – перегрев. Перегрев можно устранить дополнительной термической обработкой, заключающейся в повторном нагреве стали выще А1. В результате зерно измельчается, свойства стали возрастают. Если сталь длительное время выдерживать при температуре АС3 в окислительной атмосфкрк, то происходит образование окислов железа по границам зерен. Это так называемый пережег. Это не устранимый дефект, сталь необходимо переплавлять.

Превращение переохлажденного аустенита ( распад аустенита)

При охлаждении стали с содержанием углерода 0,8% ниже А1 происходит растад аустенита с содержанием углерода 0,8% на феррит с содержанием 0% и цементит с с содержанием углерода 6,67%. В виду такой разницы содержание углерода в исходной образующейся фазе процесс распада носит диффузионный характер.

Движещей силой любого процесса является уменьшение свободной энергии системы. При температуре, равной А1 ( 727 0С ) скорость диффузии максимальна. Разность свободных энергий старых и новых фаз равна 0. Поэтому процесс превращения аустенита в перлит при температуре А1 происходить не будет.

При переохлаждении до температуры 200 0С разность свободных энергий максимальна , а скорость диффузии атомов железа практически равна 0, следовательно при этой температуре скорость превращения также равна 0, т.е. скорость превращения переохлажденного аустенита в перлит определяется 2 факторами: разностью свободных энергий старой и новой фаз и скоростью диффузии. Максимальная скорость превращения достигается предварительным охлаждением аустенита до 500 –5500С.Эту зависимость можно представить в виде диаграммы изотермического превращения аустенита.

Линии начала и конца превращения напоминают букву С и называются С-образные кривые. Эта диаграмма распада переохлажденного аустенита для эвтектоидной стадии. Левее линии начала превращения находится область устойчивого состояния переохлажденного аустенита с минимальной устойчивостью при t=500-5500C. В зависимости от степени переохлаждения на диаграмме выделяют перлитную область (при переохлаждении в интервале А1 (5500С);бейнитную область (в интервале t (550 – М4);и мартенситную область при температуре переохлаждения ниже линии М4.

Перлитное превращение

При переохлаждении в верхней части перлитной области аустенит распадается на ферритно-цементитную смесь пластинчатого строения представляющую собой чередующие пластины феррита и цементита такая смесь называется собственно-перлит. При увеличении степени переохлаждения аустенит распадается на более дисперсную феррито-цементитную смесь, так же имеющую пластинчатое строение. Такая смесь получила название сорбит. При переохлаждении аустенита до температур перегиба С-образной кривой образуется еще более дисперсная смесь феррита и цементита, практически не индентифицируемом при металлографическом исследовании, но также имеющую пластинчатое строение. Эта смесь смесь получила название тростит. Т.о. собственно перлит, сорбид и тростит представляют собой феррито-цементитную смесь пластинчатого строения отличающуюся только дисперсностью. С увеличением степени дисперсности Ф и Ц свойства сталей возрастают.

Бейнитное превращение

Оно имеет место при переохлаждении А. До температур ниже перегиба С-образной кривой. В отличие от перлитного превращению, протекающему по диффузионному механизму бейнитное превращение протекает как по диффузионному так и бездиф. (мартенситному) механизму. Поэтому бейнитное превращение иначе называют промежуточным. При таких степенях переохлаждения диффузия атомов возможна, а диффузия атомов железа практически проходить не может. Результатом распада А. В бейнитной области является бейнит – это механическая смесь Ф и Ц, в которой Ф. Несколько пересыщен углеродом и имееет игольчатое строение, поэтому Б иначе называют игольчатый тростит. Различают верхний и нижний Б. Верхний Б имеет так называемую перистую структуру близкую к троститной, образующуюся при переохлаждении несколько ниже перегиба С-образной кривой. Нижний Б имеет игольчатое строение бликое к мартенситу и образующееся при переохлаждении до температур близких к темпер. начала мартенситного превращения (Мн).

Результатом Б. Превращения является структура, получившая название бейнит или игольчатый тростит.

Диаграмма состояния железо-цементит

Ж+F – ферритная область.

F+A – ферритная + аустенитная.

Л – ледебурит

ЦI – цементит первичный.

Железо – металл, плавящийчя при температуре 1539оС и относящийся к полиморфным.

Полиморфизм – это возможность существования металлов в различных кристаллических модификациях.

В интервале 1539 оС – 1392 оС железо имеет ОЦК решетку.

В интервале 1392 оС – 911 оС железо имеет ГЦК решетку.

При температуре менее 911 оС железо имеет ОЦК решетку.

При температуре 768 оС железо из ферромагнитного переходит в паромагнитном состояние, т.е. становится немагнитным. Это т.н. точка Кюри.

Железо сравнительно мягкий металл: в=250 МПа, НВ 80.

Цементит – химическое соединение, отвечающее формуле Fe3C. Образуется при строго определенном количестве атомов Fe и C, причем доля C составляет 6,67%. Цементит является наиболее твердой фазой железоуглеродистых сплавов (НВ 800). При нагреве в определенных условиях цементит может распадаться с образованием железа и углерода в свободном состоянии в виде графита. Способность цементита к разложению положена в основу получения чугунов.

На диаграмме состояния железа-цементит линия ABCD – линия липидус, а AHIECF – солидус.

На диаграмме состояния есть две области, прилегающие к ординате, на которых откладывают температуру компонента железа, область феррита и область аустенита. Вообще на диаграмме можно выделить 4 фазы: жидкость, феррит, аустенит и цементит.

Ферит – твердый раствор углерода в -железе. Феррит имеет ОКЦ решетку. Чисто ферритные области: AHN (1539 оС – 1392 оС) (высоко температурный феррит) и AGPQ (911 оС и до комнатной).

Аустенит – твердый раствор углерода в -железе. Имеет ГЦК решетку. Область чистого аустенита MIESG.

На диаграмме видно три горизонтальных линии, при температуре которых протекают нонвариантные рекации (С=0).

По линии HIB при Т=1499 оС протекает перетектическая реакция, в результате которой жидкость состава точки B взаимодействует с кристаллами феррита в точке Н с образованием кристаллов аустенита в точке I.

По линии ECF при Т=1147 оС протекает эвтектическая реакция, в результате которой жидкость в точке C распадается на аустенит в точке E и цементит. Механическая смесь аустенита и цементита в интервале T=1147 оС – 727 оС получила название ледебурит.

По линии PSK при Т=727 оС протекает эвтектоидная реакция, в результате которой аустенит в точке S распадается на феррит в точке P и цементит. Механическая смесь феррита и цементита получила называние перлит.

Эвтектика отличается от эвтектоида тем, что первая протекает с участием жидкой фазы. Вторая является результатом распада твердого раствора. В связи с тем, что при температуре меньше 727 оС аустенита быть не может, ледебурит видоизменяется и в интервале T=727 оС – 20 оС ледебурит – механическая смесь из перлита и цементита.

На диаграмме видны линии ограниченной растворимости (PQ и SE).

При Т=20 оС количество углерода, способного раствориться в ОЦК решетке феррита составляет 0,01% (в точке Q). При Т=727 оС количество углерода, способного раствориться в ОЦК решетке феррита составляет 0,02% (в точке P). Следовательно, при охлаждении избыток атомов углерода должен выделиться из ОЦК решетки, но не в чистом виде, а в виде цементита третичного. Аналогичное наблюдается и при растворении углерода в ГЦК решетке, если при Т=727 оС (точка S) углерод составляет 0,8%, то при Т=1147 оС (точка Е) – 2,14%. При охлаждении избыток атомов углерода должен выделиться из ГЦК решетки, но не в чистом виде, а в виде цементита вторичного. По химическому составу цементит первичный, вторичный и третичный не отличаются. Это для того, чтобы отличить цементит, выделившийся из жидкости, из аустенита и из феррита.

Сплавы железа с углеродом с содержанием углерода до 2,14% называют сталь. Стали подразделяются на доэвтектоидные, с содержанием углерода до 0,8% (феррит + перлит), эвтектоидные – 0,8% (перлит), заэвтектоидные –от 0,8% до 2,14% (перлит + цементит II). Сплавы железа с углеродом с содержанием углерода более 2,14% называют чугунами: доэвтектоидные –от 2,14% до 4,3% (перлит + ледебурит + цементит), эвтектический –4,3% (ледебурит), заэвтектический – от 4,3% до 6,67% (ледебурит + цементит I).

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.