рефераты скачать

МЕНЮ


Реферат: Управление техническими системами (лекции)

          Термопары градуируются при определенной постоянной температуры t0 (обычно t0 = 0 °C или 20 °C). При измерениях температура t0 может отличаться от градуировочного значения. В этом случае вводится соответствующая поправка в результат измерения:

EAB(t t0) = EAB(t t0’) + EAB(t0’t0).

          Поправка EAB(t0’t0) равна ТЭДС, которую развивает данная термопара при температуре горячего спая t0’ и градуировочном значении температуры холодных спаев. Поправка берется положительной, если t0’ > t0 и отрицательной, если t0’ < t0.

          Величина поправки может быть взята из градуировочной таблицы.

          Конструктивное исполнение термопар разнообразно и зависит главным образом от условий их применения. При необходимости измерения небольшой разницы температур или получения большой ТЭДС применяются дифференциальные термопары и термобатареи, представляющие собой несколько последовательно соединенных термопар.

          Компенсация изменения температуры холодных спаев термопар. Правильное измерение температуры возможно лишь при постоянстве температур свободных спаев t0. Оно обеспечивается с помощью соединительных проводов и специальных термостатирующих устройств. Соединительные провода в данном случае предназначены для переноса свободных концов термопары в зону с известной постоянной температурой, а также для подсоединения свободных концов термопары к зажимам измерительных приборов. Соединительные провода должны быть термоэлектрически подобны термоэлектродам термопары.

          Как правило, соединительные провода для термопар, изготовленных из неблагородных металлов, выполняются из тех же самых материалов, что и термоэлектроды. Исключение составляет хромель-алюмелевая термопара, для которой с целью уменьшения сопротивления линии в качестве соединительных проводов применяется медь в паре с константаном.

          Градуировки термопар: ХА - хромель-алюмелевые; ХК - хромель-копелевые;     

ПП - платинородий-платиновые и т.д.

          Требования к термопарам:

1) воспроизводимость,

2) высокая чувствительность,

3) надежность,

4) стабильность,

5) достаточный температурный диапазон.

Таблица 2.1 - Материалы, используемые для изготовления термопар.

Название Состав

ТЭДС, мВ

(при t0 = 0 °C и t1 = 100 °C)

Максимальный темпер. предел, °C
хромель 10% Cr + 90 % Ni +2,95 1000
платинородий 90 % Pt + 10 % Rh +0,86 1300
медь Cu +0,76 350
платина Pt 0 1300
алюмель 95 % Ni + 5 % Al -1,2 1000
копель 56 % Cu + 44 % Ni -4 600
константан 60 % Cu + 40 % Ni -3,4 600


          Методы и средства для измерения ТЭДС:

1) Метод непосредственной оценки ( с помощью милливольтметра);

2) Компенсационный метод (с помощью потенциометров).

          1.5.8 Термометры сопротивления.

          Измерение температуры термосопротивлениями основано на свойстве проводников и полупроводников изменять свое электрическое сопротивление при изменении температуры.

          Вид функции R = f(t) зависит от природы материала. Для изготовления чувствительных элементов серийных термосопротивлений применяются чистые металлы, к которым предъявляются следующие требования:

а) металл не должен окисляться или вступать в химические реакции с измеряемой средой;

б) температурный коэффициент электрического сопротивления металла a должен быть достаточно большим и неизменным;

в) функция R = f(t) должна быть однозначна.

          Наиболее полно указанным требованиям отвечают: платина, медь, никель, железо и др.

          Основной недостаток термосопротивлений: большая инерционность (до 10 мин.).

          Для измерения температуры наиболее часто применяются термосопротивления типов ТСП (платиновые) и ТСМ (медные).

          1.5.9 Пирометры излучения.

          Пирометры излучения основаны на использовании теплового излучения нагретых тел. Верхний предел измерения температуры пирометра излучения практически не ограничен. Измерение основано на бесконтактном способе, поэтому отсутствует искажение температурного поля, вызываемого введением преобразовательного элемента прибора в измеряемую среду. Возможно измерение температуры пламени и высоких температур газовых потоков при больших скоростях.

          Лучистая энергия выделяется нагретым телом в виде волн различной длины. При сравнительно низких температурах (до 500 °С) нагретое тело испускает инфракрасные лучи. По мере повышения температуры цвет тела от темно-красного доходит до белого. Возрастание интенсивности монохроматического излучения с повышением температуры описывается соответствующими уравнениями.

          1.5.10 Цветовые пирометры.

          В цветовых пирометрах определяется отношение интенсивности излучения реального тела Еl в лучах с двумя заранее выбранными значениями длины волны l1 и l2, то есть показания цветовых пирометров определяется функцией f(Еl1 / Еl2). Это отношение для каждой температуры различно, но однозначно.

          1.6. Вторичные приборы для измерения разности потенциалов.

          Для измерения ТЭДС в комплектах термоэлектрических термометров применяются пирометрические милливольтметры и потенциометры. В потенциометрах, в отличие от милливольтметров, используется компенсационный метод измерения.

          1.6.1 Пирометрические милливольтметры.

        Пирометрические милливольтметры являются электро-измерительными приборами магнито-электрической системы.

        В конструкции пирометрических милливольтметров можно выделить магнитную и подвижную системы. Первая состоит из подковообразного магнита 1, полюсных наконечников 2 и цилиндрического сердечника 3. Кольцевой зазор между сердечником и полюсными наконечниками характеризуется наличием практически равномерного электромагнитного поля.

В этом зазоре соосно с сердечником размещается рамка 4, которая монтируется на кернах, опирающихся на подпятники, либо на натянутых нитях. Момент сил, противодействующий вращению рамки создается специальными пружинами.

          Взаимодействие тока, протекающего по рамке с полем постоянного магнита 2 вызывает появление вращающего момента, который, будучи уравновешен противодействующим моментом пружин, поворачивает рамку на определенный угол. Этот угол пропорционален величине протекающего по рамке тока.

          1.6.2 Потенциометры.

RАВ

 

В

 

А

 
     Потенциометры в отличие от милливольтметров работают по компенсационному (нулевому) методу измерения.

Овал: НП

D

 

Е(t t0)

 

ΔU

 
     Принцип компенсации при измерении ТЭДС заключается в уравновешивании ее известным напряжением DU на калибровочном резисторе RАВ, созданным вспомогательным источником тока. Ток от вспомогательного источника проходит через реохорд RAB.UAB пропорционально RАВ (в точке D находится движок реохорда).

Рис. 2.4

 
     Последовательно с термопарой, генерирующей ТЭДС, включен милливольтметр НП (нуль-прибор) с нулем в середине шкалы. Передвигая движок D, добиваются уравновешивания ΔU и E(t t0).

          1.6.3 Автоматические электрические потенциометры.


          Схема автоматического потенциометра показана на рис. 2.5, где обозначено:

Rp - сопротивление реохорда,

Rш - шунта,

Rп - для задания пределов измерения,

Rн и Rк - для задания начала и конца шкалы,

Rб - балластное,

Rс - для поверки рабочего тока,

Rм - медное сопротивление для компенсации влияния температуры холодных спаев.

ИПС - источник питания стабилизированный.

          Потенциометр состоит из моста сопротивлений АВСD, в одну из диагоналей которого включен источник питания ИПС (диагональ ВС), а в другую (измерительную диагональ АD) термопара с ТЭДС Е и электродвигатель ЭД с усилителем УЭД. В вершине А моста находится реохорд Rр, к движку которого прикреплена стрелка, движущаяся вдоль шкалы. Перемещением движка в свою очередь управляет электродвигатель.

          Мост может находится в двух состояниях: уравновешенном и неуравновешенном.

          Когда мост находится в равновесии, то напряжение между его вершинами AD равно по модулю термоЭДС (UAD = Е) и напряжение небаланса ΔU, подаваемое на усилитель УЭД, равно нулю:

ΔU = UAD – Е = 0.

В данном состоянии ЭД не работает.

Если по каким-либо причинам термо-ЭДС Е изменится, то мост выходит из равновесия и на входе усилителя УЭД появится напряжение небаланса ΔU ≠ 0. Усилитель, усилив напряжение, подает его на ЭД, который, вращаясь, перемещает движок реохорда. перемещение движка продолжается до тех пор, пока мост снова не придет в равновесие и напряжение на ЭД снова не станет равно нулю.

          В этих потенциометрах процесс компенсации осуществляется автоматически, непрерывно и с большой скоростью. Эти приборы имеют устройства для автоматического внесения поправки на температуру холодных спаев термопары.

          1.7. Методы измерения сопротивления.

          Для измерения сопротивлений термоэлектрических сопротивлений (ТС) часто используют автоматические электронные мосты, включенные по двухпроводной, трехпроводной или четырехпроводной схемам.

          Двухпроводная схема подключения моста к ТС показана на рис. 2.6, где обозначены:

R1, R2, R3, R4 - сопротивления моста;

Rб - балластное сопротивление для ограничения рабочего тока;

Rт - сопротивление ТС;

Rл - сопротивление линии (соединительных проводов).

          Условием равновесия моста является равенство произведений противолежащих плечей, т.е. в данном случае:

R1.R3 » R2.(R4 + Rт + 2.Rл).

          Когда мост уравновешен, напряжение на диагонали UAD = 0 и, следовательно, ЭД не работает. При изменении температуры объекта изменяется Rт и UAD перестает быть нулевым. Это напряжение усиливается УЭД и подается на ЭД, который, вращаясь, перемещает движок реохорда.

 

 

 


        Недостатком такой схемы является то, что сопротивления линии входят в одно плечо с Rт, следовательно, изменение Rл может вызывать изменение показаний моста. Для компенсации Rл применяются трехпроводная или четырехпроводная схемы.

        Трехпроводная схема подключения моста (см. рис. 2.7).

В этом случае уравнение равновесия имеет вид:

(R1 + Rл).R3 » R2.(R4 + Rт + Rл).

То есть сопротивление линии Rл входит в обе части уравнения и частично компенсируется.

 

          1.8. Методы и приборы для измерения давления и разряжения.

          1.8.1 Классификация приборов для измерения давления.

          Под давлением в общем случае понимают предел отношения нормальной составляющей усилия к площади, на которую действует усилие.

          В зависимости от природы контролируемого процесса нас интересует абсолютное давление Ра или избыточное Ри. При измерении Ра за начало отсчета принимается нулевое давление, которое можно себе представить как давление внутри сосуда после полной откачки воздуха. Естественно, достигнуть Ра = 0 невозможно.

          Барометрическое давление Рбар - давление, оказываемое атмосферой на все находящиеся в ней предметы.

          Избыточное давление представляет собой разность между абсолютным и барометрическим давлениями:

Ри = Ра - Рбар

Если Рабс < Рбар, то Ри называется давлением разряжения.

          Классификация приборов для измерения давления:

I. По принципу действия:

1) жидкостные (основанные на уравновешивании давления столбом жидкости);

2) поршневые (измеряемое давление уравновешивается внешней силой, действующей на поршень);

3) пружинные (давление измеряется по величине деформации упругого элемента);

4) электрические (основанные на преобразовании давления в какую-либо электрическую величину).

II. По роду измеряемой величины:

1) манометры (измерение избыточного давления);

2) вакуумметры (измерение давления разряжения);

3) мановакуумметры (измерение как избыточного давления, так и давления разряжения);

4) напорометры (для измерения малых избыточных давлений);

5) тягомеры (для измерения малых давлений разряжения);

6) тягонапорометры;

7) дифманометры (для измерения разности давлений);

8) барометры (для измерения барометрического давления).

          1.8.2 Жидкостные манометры.

              Широко применяются в качестве образцовых приборов для лабораторных и технических измерений. В качестве рабочей жидкости используется спирт, вода, ртуть, масла.

              Двухтрубный манометр представляет из себя U-образную трубку, заполненную затворной жидкостью.

 

          1.8.3 Чашечные манометры и дифманометры.

Н

 
          Чашечный (однотрубный) манометр является разновидностью U-образного трубного манометра (см. рис. 2.10), у которого одна из трубок заменена сосудом большого диаметра (чашкой). Измеряется давление Ра, действующее на жидкость в широком сосуде, а открытый конец трубки совмещен с атмосферой.

       Уравнение равновесия:                   Р = r g (h + H).

Рис. 2.10

 
       Чашечные и трубные манометры применяются для тарировки и поверки рабочих приборов, реже - в качестве рабочих приборов.

          1.8.4 Микроманометры.

Рис. 2.11

 
       Применяются для измерения давлений, меньших 100 - 200 мм водяного столба. Представляют из себя жидкостной манометр с наклоненной по углом 20…50° трубкой.

h = L.sin(a) - высота поднятия уровня жидкости в узкой трубке,

P = r.g.h - измеренное давление.

       Погрешность: ± 1,5 %.

   1.8.5 Пружинные манометры.

   Состоят из трубчатой пружины 1 с поводком, зубчатого сектора 3 и шестерни 4 с прикрепленной к ней стрелкой 2.

   При увеличении давления трубчатая пружина стремится разогнуться, в результате чего она через поводок начинает взаимодействовать на зубчатый сектор, отклоняя стрелку.

          1.8.6 Электрические манометры.

                   Преобразователи давления типа "Сапфир".

          Эти манометры обеспечивают непрерывное преобразование значение измеряемого параметра (давления избыточного, абсолютного, разряжения, разности давлений нейтральных и агрессивных сред) в унифицированный токовый сигнал для дистанционной передачи (0 - 5 мА, 0 - 20 мА и др.).

          Мембранный тензопреобразователь 3 размещен внутри основания 9 (см. рис. 2.13). Внутренняя полость 4 тензопреобразователя заполнена кремни­йорганической жидкостью и отделена от измеряемой среды металли­ческой гофрированной мембраной 6, приваренной по наружному кон­туру к основанию 9. Полость 10 сообщена с окружающей атмосферой.

Измеряемое давление подается в камеру 7 фланца 5, который уплотнен прокладкой 8. Измеряемое давление воздействует на мемб­рану 6 и через жидкость воздействует на мембрану тензопреобразо­вателя, вызывая ее прогиб и изменение сопротивления тензорезис­торов. Электрический сигнал от тензопреобразователя передается из измерительного блока 1 по проводам через гермовывод 2.


Преобразователи Сапфир-22ДА моделей 2050 и 2060, предназначенные для измерения абсолютного давления, отличаются тем, что полость 10 вакуумирована и герметизи­рована.

Преобразователи Сапфир-22ДД моделей 2410, 2420, 2430, 2434, 2440 и 2444 (см. рис. 2.14), предназначенные для измерения разности давлений, отличаются тем, что в них используется тензопреобразователь мембранно-рычажного типа, который размещен внутри основания в замкнутой полости, заполненной кремнийорганической жидкостью, и отделен от измеряемой среды двумя металлическими гофрированными мембранами. Мембраны соединены между собой центральным штоком, перемещение которого передается рычагу тензопреобразователя, что вызывает деформацию тензопреобразователя.          Чувствительным элементом тензопреобразователя является пластина из монокристаллического сапфира (разновидность корунда - Al2O3) с кремниевыми пленочными тензорезисторами (структура КНС - кремний на сапфире).

Страницы: 1, 2, 3, 4, 5, 6, 7


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.