рефераты скачать

МЕНЮ


Реферат: Научно-технический прогресс газотурбинных установок магистральных газопроводов

В 1950 г. прошел 200-часовые испытания ТВД ТВ-022, получивший позднее обозначение ТВ-2. В 1951 г. он был форсирован до 6250 л.с. и назван ТВ-2Ф. С двумя спаренными ТВ-2Ф опытный дальний тяжелый бомбардировщик Ту-95-1 выполнил шестнадцать полетов до катастрофической поломки редуктора 11 мая 1953 г.

В ноябре 1953 г. немецкие специалисты вернулись в ГДР в г. Пирна, где до 1960 г. под руководством д-ра Р. Шейноста создали ряд модификаций: ТРД Пирна-014, -020 и ТВД Пирна-018 (с тягами 3160…3730 кгс и мощностью 3680 л.с.).

В связи с катастрофой ТВД ТВ-2Ф было ускорено создание нового, самого мощного в мире ТВД НК-12. Он имел мощность 12500 л.с., четырнадцатиступенчатый компрессор на  = 9,5 и пятиступенчатую турбину с К. НК-12 прошел 100-часовые государственные испытания 25 декабря 1954 г. А 19 июня 1956 г. прошла госиспытания модификация ТВД НК-12М мощностью 15000 л.с. Двигатели НК-12 и НК-12М устанавливались на самолеты Ту-95, Ту-126, Ту-142, Ту-114, Ан-22 ("Антей") и экраноплан.

Такова история создания первых опытных и серийных отечественных авиационных ТРД и ТВД.

В середине 1950-х гг. создаются двигатели второго поколения. Из них наиболее выдающиеся ТРД и ТРДФ - РД-9Б, АЛ-7Ф, Р11-300, РД-3М, ВД-7, ТВД НК-12, АИ-20.

Рис. 6. Схемы ТРД из патентов Ф. Уиттла и Г. фон Охайна

В 1960-е и вначале 1970-х годов в эксплуатации появляются ТРДД - это Д-20П, Д-30, Д-30КУ/КП, НК-8-4, НК-8-2У, НК-144 и высокопараметрические ТРДФ АЛ-21Ф и Р27, -29-300.

Все эти двигатели относятся к двигателям третьего поколения с относительно высокими параметрами цикла  = 12…20, К и охлаждаемой турбиной.

С середины 1970-х годов по 1990-е годы в СССР созданы ряд выдающихся двигателей четвертого поколения — первые двигатели с большой степенью двухконтурности Д-36, Д-18, ПС-90А, а также военные ТРДДФ Д-30Ф6, НК-32, РД-33 и AЛ-31Ф, характеризующиеся высокими параметрами цикла  = 20…37, К, освоением новых технологий и материалов.

В середине 1980-х гг. начато создание двигателей пятого поколения — ТВВД НК-93 и Д-27 (с капотированным и открытым вентилятором) и ТРДДФ AЛ-41Ф, доводка которого продолжается. Более подробно параметры и конструктивный облик поколений ГТД приведены в табл. 1.


1.2 Германия

Пионерами развития турбореактивного авиадвигателестроения в Западной Европе были Фрэнк Уиттл (1907-1996) в Англии и Ганс фон Охайн (1911-1998) в Германии. Ф. Уиттл приблизительно на пять лет раньше Г. фон Охайна начал оформление концептуальной идеи ТРД (рис. 1.24) и ее патентование. Однако испытания первых двигателей-демонстраторов HeS 1 и W.U.-1 начались приблизительно в одно и то же время — в марте и апреле 1937 г.

Общим для обоих энтузиастов, создававших первые в мире работающие ТРД, было то, что первые расчеты и проекты они сделали еще в студенческие годы Ф. Уиттл в возрасте 22 лет на четвертом курсе колледжа Королевских ВВС в Корнуэлле, а затем на курсах инструкторов летной школы в Уиттеринге (1928 - 1929), а Г. фон Охайн также в возрасте 22 лет, при окончании Геттингенского университета (1933—1934).

Г. фон Охайна с 3 апреля 1936 г. работал по контракту с Э. Хейнкелем. И первый полет только на реактивной тяге был совершен на самолете Не-178 с двигателем его конструкции 27 августа 1939 г. — двигатель HeS3B с тягой 450 кгс (рис. 7). Несмотря на это Г. фон Охайну так и не удалось создать массовый серийный ТРД.


Рис. 8. Конструктивная схема ТРД Юмо-004

Наибольших успехов при создании первого массового серийного реактивного двигателя Юмо-004 (рис. 8) добился другой немецкий конструктор австрийского происхождения Анслем Франц (1900 - 1994). Он получил образование в Техническом университете г. Граца, а затем в докторантуре Берлинского университета. В 1936 г. А. Франц поступил в фирму "Юнкере" (г. Дессау). Он возглавлял отдел нагнетателей, когда в 1939 г. его назначили руководителем проекта ТРД Юмо-004.

В отличие от проектов Ф. Уиттла и Г. фон Охайна, основанных на применении центробежных компрессоров, для двигателя Юмо-004 была выбрана осевая схема компрессора, имеющая выигрыш по лобовой производительности и КПД.

Аэродинамика восьмиступенчатого компрессора на расход воздуха 21,2 кг/с и = 3,14 была основана на работах Института Аэродинамики в г. Геттингене. Компрессор проектировал доктор Энке. Наивысший КПД компрессора составлял 82 %, а в рабочих точках 75…78 %. Турбина с КПД 79...80 % создавалась на основе опыта разработки паровых турбин в AEG (г. Берлин). Признавая превосходство кольцевой камеры сгорания, А. Франц выбрал камеру с жаровыми трубами для ускорения доводки.

Первый запуск Юмо-004А состоялся весной 1940 г., а в январе 1941 г. двигатель был выведен на полные обороты n = 9000 об/мин с тягой 430 кгс. Тяга 1000 кгс была получена лишь в декабре 1941 г. Летные испытания опытного Юмо-004А начались 15 марта 1942 г. на летающей лаборатории Me-100. Первый полет (только на реактивной тяге) состоялся 18 июля 1942 г. на самолете Ме-262 с двумя двигателями Юмо-004А.

При доводке Юмо-004 были преодолены две большие проблемы:

- в первой половине 1941 г. повышенные вибрации и поломки лопаток СА компрессора;

- во второй половине 1943 г. повышенные вибрации и поломки рабочих лопаток турбины.

Первая проблема была вызвана консольной конструкцией лопаток СА компрессора, изготовленных из листа, а вторая резонансным возбуждением рабочих лопаток турбины шестью жаровыми трубами и тремя толстыми стойками за турбиной. Каждая проблема решалась в течение полугода с помощью известного специалиста по вибрациям лопаток доктора Макса Бентеле.

Массовая поставка серийного варианта Юмо-004В с тягой 900 кгс началась в марте 1944 г. Всего в Германии их было изготовлено 6424 шт. Двигатели устанавливались на истребителях Ме-262 (1400 шт.), бомбардировщиках Ю-287 и Арадо 234В (рис. 9).

После войны двигатель получил дальнейшее развитие (Юмо-012) с участием немецких и советских специалистов в Восточной Германии и в ОКБ завода № 2 г. Куйбышева (г. Самара) (рис. 10).

Рис. 9. Самолеты Ме-262А с двигателями Юмо-004 и Arado-234 с двигателями BMW-003 или Юмо-004


Одновременно в Германии на фирмах BMW и Bramo (г. Шпандау) создавался другой ТРД - BMW-003 (рис. 11). Он был близок по конструкции Юмо-004, но имел кольцевую камеру сгорания и несколько меньшую тягу – 800 кгс. Руководил разработкой Герман Ойстрих. BMW-003 был выпущен значительно меньшей серией, чем Юмо-004 и устанавливался на самолётах Не-162 и Arado-234. Герман Ойстрих впоследствии работал во французской фирме Snecma и вместе со 120 специалистами фирмы BMW создал там ТРД Atar-101.

В 1949 г. первый двигатель BMW был запущен, но он выдал тягу всего 260 кгс. Тягу 460 кгс BMW-003 показал на испытаниях на самолете Ме-262 только в ноябре 1941 г. Ме-262 имел, кроме этого, носовой поршневой двигатель. Испытания были неудачными. Уже при взлете были поломаны лопатки компрессора. Это привело к тому, что в дальнейшем предпочтение было отдано двигателю Юмо-004.

Первый серийный BMW-003А-0 был испытан полете в октябре 1943 г. Всего в Германии было построено около 700 шт. различных модификаций BMW-003. В 1940 г. фирма BMW начала проектировать также ТВД BMW-109-028 мощностью 7900 л.с. (рис. 12). Опыт проектирования этого двигателя был использован после войны в г. Куйбышеве (г. Самара) в ОКБ завода № 2.

1.3 Англия

Начатую Ф. Уиттлом в инициативном порядке программу создания и развития английских ТРД можно считать (как и немецкую программу Юмо-004) весьма успешной. Уиттл принял удачную концептуальную идею разработки ТРД – центробежный компрессор с = 4 и двухсторонним входом. Это позволило значительно повысить лобовую тягу двигателя.

От первого запуска экспериментального ТРД Ф. Уиттла W.U. (Whittle Unit), состоявшегося 12 апреля 1937 г., до первого полета однодвигательного реактивного самолета "Глостер" Е28/39 с ТРД W.1 15 мая 1941 г. прошло четыре года. За это время решалось много проблем. Но главной была проблема создания надежной камеры сгорания, которая претерпела ряд изменений — от кольцевой до трубчатой противоточной, а затем и до трубчатой прямоточной. После разрушения турбины на W.U.-3 в феврале 1941 г. был внедрен новый никелевый сплав фирмы "Монд Никель", названный Нимоник 80.

Рис. 10. Конструктивные схемы дальнейшего развития двигателя Юмо (Юмо-012Б)

Рис. 11. Конструктивная схема ТРД BMW-003

Рис. 12. Конструктивные схемы дальнейшего развития двигателя BMW


Объединенными усилиями трех фирм - "Пауэр Джетс", "Ровер" и "Роллс-Ройс" - был создан опытный двигатель W.2B, ставший прототипом двигателей "Велланд", а затем "Дервент" и "Нин" (уже с прямоточными трубчатыми камерами сгорания). 5 марта 1943 г. двухдвигательный истребитель Глостер ("Метеор-1") с двумя двига телями W.2B ("Велланд 1") тягой по 770 кгс совершил первый полет. А в июле 1944 г. он поступил в широкую эксплуатацию. Всего в Европе в период с 1943 по 1954 гг. было построено 3875 "Метеоров" различных модификаций.

Первым британским двигателем с осевым компрессором был "Метрополитен-Викерс F2" (рис. 13), созданный А. Гриффитом и Х. Константом и впервые испытанный на стенде в 1940 г. В ноябре 1943 г. два таких двигателя тягой по 975 кгс были установлены на "Метеор F2/40" и совершили первый полет.

"Роллс-Ройс" продолжила разработку ТРД с центробежным компрессором, включая "Дервент" (1943 г.), "Нин" (1944 г.) и "Дарт" (1947 г.), а в 1950-е гг. перешла на ТРД с осевыми компрессорами (типа "Эйвон") и ТРДД ("Конуэй", "Спей" и т.д.)

Сравнение основных данных первых опытных и серийных ТРД СССР, Англии и Германии дано в табл. 1.

Сравнительная хронология ряда важнейших событий при создании первых газотурбинных и турбореактивных двигателей в СССР, Англии и Германии дана в табл. 2.

Рис. 13. Конструктивная схема ТРД "Метрополитен-Викерс F2"


Таблица 1 Основные данные первых опытных и серийных ТРД

Таблица 2 Хронология создания первых турбореактивных двигателей


Таблица 3 Поколения авиационных ГТД


2. ГТД наземного и морского применения

Параллельно с развитием авиационных ГТД началось применение ГТД в промышленности и на транспорте. В 1939 г. швейцарская фирма A.G. Brown Bonety ввела в эксплуатацию первую электростанцию с газотурбинным приводом мощностью 4 МВт и КПД 17,4 %. Эта электростанция и в настоящее время находится в работоспособном состоянии. В 1941 г. вступил в строй первый железнодорожный газотурбовоз, оборудованный ГТД мощностью 1620 кВт (2200 л.с.) разработки этой же фирмы. С конца 1940-х гг. ГТД начинают применяться для привода морских судовых движителей, а с конца 1950-х гг. - в составе газоперекачивающих агрегатов (ГПА) на магистральных газопроводах для привода нагнетателей природного газа. Таким образом, постоянно расширяя область и масштабы своего применения, ГТД развиваются в направлении повышения единичной мощности, экономичности, надежности, автоматизации эксплуатации, улучшения экологических характеристик.

Быстрому внедрению ГТД в различные отрасли промышленности и транспорта способствовали неоспоримые преимущества этого класса тепловых двигателей перед другими энергетическими установками - паротурбинными, дизельными и др. К таким преимуществам относятся:

- большая мощность в одном агрегате;

- компактность, малая масса (рис. 14);

- уравновешенность движущихся элементов;

- широкий диапазон применяемых топлив;

- легкий и быстрый запуск, в том числе при низких температурах;

- хорошие тяговые характеристики;

- высокая приемистость и хорошая управляемость.

Основным недостатком первых моделей наземных и морских ГТД была относительно низкая экономичность. Однако эта проблема достаточно быстро преодолевалась в процессе постоянного совершенствования двигателей, чему способствовало опережающее развитие технологически близких авиационных ГТД и перенос передовых технологий в наземные двигатели.

2.1 Механический привод промышленного оборудования

Наиболее массовое применение ГТД механического привода находят в газовой промышленности. Они используются для привода нагнетателей природного газа в составе ГПА на компрессорных станциях магистральных газопроводов, а также для привода агрегатов закачки природного газа в подземные хранилища (рис. 15).

Рис. 15. Применение ГТД для прямого привода нагнетателя природного газа: 1 - ГТД; 2 - трансмиссия; 3 - нагнетатель.

К примеру, только в ОАО "Газпром" к настоящему времени эксплуатируются около 3100 ГТД суммарной установленной мощностью свыше 36000 МВт. ГТД используются также для привода насосов, технологических компрессоров, воздуходувок на предприятиях нефтяной, нефтеперерабатыватывающей, химической и металлургической промышленности. Мощностной диапазон ГТД от 0,5 до 50 МВт.

Основная потребность перечисленного приводимого оборудования – зависимость потребляемой мощности от частоты вращения (обычно близкая к кубической), температуры и давления нагнетаемых сред. Поэтому ГТД механического привода должны быть приспособлены к работе с переменными частотами вращения и мощностью. Этому требованию в наибольшей степени отвечает схема ГТД со свободной силовой турбиной. Различные схемы морских и наземных ГТД будут рассмотрены ниже.

2.2 Привод электрогенераторов

ГТД для привода электрогенераторов (рис. 16) используются в составе газотурбинных электростанций (ГТЭС) простого цикла и конденсационных электростанций комбинированного парогазового цикла (ПГУ), вырабатывающих "чистую" электроэнергию, а также в составе когенерационных установок (в российской литературе они часто называются "ГТУ-ТЭЦ"), производящих совместно электрическую и тепловую энергию.

Современные ГТЭС простого цикла, имеющие относительно умеренный электрический КПД ηэл= 25…40%, в основном используются в пиковом режиме эксплуатации – для покрытия суточных и сезонных колебаний спроса на электроэнергию. Эксплуатация ГТД в составе пиковых ГТЭС характеризуется высокой цикличностью (большим количеством циклов "пуск – нагружение – работа под нагрузкой – останов"). Возможность ускоренного пуска является важным преимуществом ГТД при работе в пиковом режиме. Электростанции с ПГУ используются в базовом режиме (постоянная работа с нагрузкой, близкой к номинальной, с минимальным количеством циклов "пуск – останов" для проведения регламентных и ремонтных работ). Современные ПГУ, базирующиеся на ГТД большой мощности (N > 150 МВт), достигают КПД выработки электроэнергии ηэл= 58…60%. В когенерационных установках тепло выхлопных газов ГТД используется в котле-утилизаторе для производства горячей воды и (или) пара для технологических нужд или в системах централизованного отопления. Совместное производство электрической и тепловой энергии значительно снижает её себестоимость. Коэффициент использования тепла топлива в когенерационных установках достигает 90%. Электростанции с ПГУ и когенерационные установки являются наиболее эффективными и динамично развивающимися современными энергетическими системами. В настоящее время мировое производство энергетических ГТД составляет около 12000 штук в год суммарной мощностью около 76000 МВт.

Основная особенность ГТД для привода электрогенераторов – постоянство частоты вращения выходного вала на всех режимах (от холостого хода до максимального), а также и высокие требования к точности поддержания частоты вращения, от которого зависит качество вырабатываемого тока. Этим требованиям в наибольшей степени соответствуют одновальные ГТД, поэтому они широко используются в энергетике.

Рис. 16. Применение ГТД для привода генератора (через редуктор): 1- ГТД, 2 – трансмиссия, 3 – редуктор, 4 – генератор.

ГТД большой мощности (N > 60 МВт), работающие, как правило, в базовом режиме в составе мощных электростанций, выполняются исключительно по одновальной схеме.

В энергетике используется весь мощностной ряд ГТД от нескольких десятков кВт до 350 МВт.

2.3 Применение в морских условиях

В морских условиях ГТД применяются в составе силовых агрегатов гражданских морских судов и боевых кораблей различного класса: от быстроходных ракетных и патрульных катеров водоизмещением около 500 т до авианосцев и кораблей сопровождения водоизмещением до 50000 т. Газотурбинный силовой агрегат обычно включает один или несколько ГТД и редуктор для понижения частоты вращения и передачи мощности на гребной винт. При этом ГТД могут быть различной мощности. В этом случае двигатель меньшей мощности используется как маршевый для экономичного крейсерского хода, а большей мощности – как форсажный для обеспечения максимального боевого хода при совместной работе с маршевым двигателем. Применяются также силовые агрегаты смешанного типа с использованием дизеля в качестве маршевого двигателя.

К ГТД морского применения могут быть отнесены также двигатели, предназначенные для привода промышленного и энергетического оборудования, но работающие в морских условиях – на морских платформах добычи нефти и газа или в прибрежной полосе. Такие ГТД должны удовлетворять ряду специфических требований, поскольку работают они в агрессивной морской среде. Класс мощности морских ГТД – от 0,5 до 50 МВт.

Кроме перечисленных выше основных объектов ГТД применяются также как двигатели наземных транспортных средств (локомотивов, автомобилей) и боевой техники (танков, бронемашин). Прорабатывается применение ГТД для городских трамваев.

Дополнительным эффектом использования ГТД может быть выработка сжатого воздуха, инертных газов, охлаждённого воздуха (в системах кондиционирования и промышленных холодильниках).


3. Основные типы наземных и морских ГТД

Наземные и морские ГТД различного назначения и класса мощности можно разделить на три основных технологических типа:

- стационарные ГТД;

- ГТД, конвертированные из авиадвигателей (авиапроизводные);

- микротурбины.

3.1 Стационарные ГТД

Двигатели этого типа разрабатываются и производятся на предприятиях энергомашиностроительного комплекса согласно требованиям, предъявляемым к энергетическому оборудованию:

- высокий ресурс (не менее 100000 ч) и срок службы (не менее 25 лет);

- высокая надёжность;

- ремонтопригодность в условиях эксплуатации;

- умеренная стоимость применяемых конструкционных материалов и ГСМ для снижения стоимости производства и эксплуатации;

- отсутствие жёстких габаритно-массовых ограничений, существенных для авиационных ГТД. Перечисленные требования сформировали облик стационарных ГТД, для которых характерны следующие особенности:

- максимально простая конструкция;

- использование недорогих материалов с относительно низкими характеристиками;

- массивные корпуса, как правило, с горизонтальным разъёмом для возможности выемки и ремонта ротора ГТД в условиях эксплуатации;

- конструкция камеры сгорания, обеспечивающая возможность ремонта и замены жаровых труб в условиях эксплуатации;

- использование подшипников скольжения.


Рис. 17. Стационарный ГТД (модель M501F фирмы Mitsubishi Н. I.) мощностью 150 МВт

Типичный стационарный ГТД показан на рис. 17. В настоящее время ГТД стационарного типа используются во всех областях применения наземных и морских ГТД в широком диапазоне мощности от 1 МВт до 350 МВт.

На начальных этапах развития в стационарных ГТД применялись умеренные параметры цикла. Это объяснялось некоторым технологическим отставанием от авиационных двигателей из-за отсутствия мощной государственной финансовой поддержки, которой пользовалась авиадвигателестроительная отрасль во всех странах-производителях авиадвигателей. С конца 1980-х гг. началось широкое внедрение авиационных технологий при проектировании новых моделей ГТД и модернизации действующих. К настоящему времени мощные стационарные ГТД по уровню термодинамического и технологического совершенства вплотную приблизились к авиационным двигателям при сохранении высокого ресурса и срока службы.

Страницы: 1, 2, 3, 4


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.