рефераты скачать

МЕНЮ


Курсовая работа: Расчет и проектирование редуктора общего назначения

Таблица №2.

Условное обозначение подшипника d D B Грузоподъемность, кН
Размеры, мм С

С0

109 45 75 16 21,2 12,2
209 45 85 19 33,2 18,6

Для смазки подшипников будем применять консистентную пластичную смазку Литол - 24 по ГОСТ 21150-75, для предотвращения вытекания смазки внутрь корпуса и вымывания пластичного материала жидким маслом из зоны зацепления устанавливаем мазеудерживающие кольца, их ширина определяется размером у = 8 ¸ 12 мм.

Измерением определяю расстояние на ведущем валу l1 = 68 мм, и на ведомом l2 = 72 мм. Принимаю окончательно 72 мм.

Глубина гнезда для подшипника lГ ≈1.5B, для 109 подшипника 24 мм, для 209 – 28,5 мм, принимаю lГ = 30 мм.

Толщину фланца Δ крышки подшипника принимаю примерно равной диаметру d0 отверстия в крышке под крепящий болт, для принятых мною подшипников это 14 мм. Высоту головки болта принимаю 0,7dб = 0,7*12 = 8,4 мм, зазор между головкой болта и ступицей шестерни принимаю 10 мм. Измерением устанавливаю расстояние l3 = 78 мм.


9.  Проверка долговечности подшипника

Описание: 2011-06-06_120102.gif

Рисунок 3. Расчётная схема ведущего вала

Ведущий вал. Из предыдущих расчетов имею Ft = 3050 H; Fr = 1138,57 Н; Fα = 695,10 H из первого этапа компоновки l1 = 72мм.

Реакции опор:

в плоскости xz:

Rx1 = Rx2 = Ft /2 = 3050/2 = 1525 H;

в плоскости yz:


Проверка: Ry1 + Ry2 – Fr = 762,37 + 376,20 – 1138,57 = 0

Суммарные реакции

;

.

Подбор подшипника буду производить по наиболее нагруженной опоре 1.

Намечаю радиальные шариковые подшипники 109 (приложение П3 [1]): d = 45 мм ; D = 75 мм ; B = 16 мм ; C = 21,2 кН ; C0 = 12,2 кН

Эквивалентная нагрузка

,

где Pr1= 1704,94 Н – радиальная нагрузка; Ра = Fα = 695,1 Н – осевая нагрузка; V = 1 (вращается внутреннее кольцо); коэффициент безопасности для привода ленточных конвейеров Кσ = 1 (табл.9.19 [1]), КТ = 1 (табл.9.20 [1]).

Отношение Fα /C0 = 695,1/12200 = 0,057 ; этой величине соответствует е ≈ 0,26 (табл. 9.18 [1]).

Отношение Рɑ /Рr1 = 695,1/1704,94 = 0,407 > e; Х = 0,56 и Y = 1,74

PЭ = (0,56*1*1704,94+1,74*695,1)*1*1 ≈ 2164,24 Н

Расчетная долговечность, млн. об

L = (C/PЭ)3 = (21,2*103/21,6424*102)3 ≈ 940 млн. об

Расчетная долговечность, час

Lh = L*106/60n = 940*106/60* 974 ≈ 16084 час, что больше установленного ГОСТ 16162-85.

Ведомый вал: несет такие же нагрузки как и ведущий.

Описание: 2011-06-06_120131.gif

Рисунок 4. Расчетная схема ведомого вала

Ft = 3050 H; Fr = 1138,57 Н; Fα = 695,10 H; из первого этапа компоновки l2 = 72 мм, l3 = 78 мм. (Рис. 4)

Нагрузка на вал от открытой зубчатой передачи Ft =7190 H. Составляющие этой нагрузки Fвх = Fву = FТ = 2617 Н, так как передача прямозубая, из первого этапа компоновки l2 = 72 мм, l3 = 78 мм.

Реакции опор:

в плоскости xz:

Проверка: Rx3 + Rx4 –(Ft + FBX) = 107,46 + 5559,54 – (3050 + 2617) = 0.

в плоскости yz:

Проверка: Ry3 + FBY –(Fr + Ry4) = 1214.49 + 2617 –(1138.57 + 2692.92)=0

Суммарные реакции:

Подбор подшипника буду производить по более нагруженной опоре 4.

Намечаю радиальные шариковые подшипники 209 (приложение П3 [1]): d = 45 мм ; D =85 мм ; B = 19 мм ; C = 33,2 кН ; C0 = 18,6 кН

Эквивалентная нагрузка

,

где Pr4= 6177,40 H – радиальная нагрузка; Ра = Fα = 695,10 H – осевая нагрузка;V = 1 (вращается внутреннее кольцо); коэффициент безопасности для привода ленточных конвейеров Кσ = 1 (табл.9.19 [1]), КТ = 1 (табл.9.20 [1]).

Отношение Fα /C0 = 695,10/18600 = 0,037; этой величине соответствует е ≈ 0,29.

Отношение Рɑ /Рr1 = 695,10/6177,40 = 0,11 < e; Х = 1 и Y = 0

PЭ = (1*1*6177,40)*1*1 ≈ 6177,40 Н

Расчетная долговечность, млн. об

L = (C/PЭ)3 = (33,2*103/61,7740*102)3 ≈ 155 млн. об

Расчетная долговечность, час

Lh = L*106/60n = 155*106/60*243,5 ≈ 10609 час, что больше установленного ГОСТ 16162-85.

При соответствующем соблюдении ПТЭ, контроле качества и количества смазки, снятии ВАХ и выполнении рекомендаций со стороны завода – изготовителя подшипников, данные подшипники могут проработать дольше.

Для зубчатых редукторов ресурс работы подшипников может превышать 36000 час (таков ресурс самого редуктора), но не должен быть меньше 10000 час (минимально допустимая долговечность подшипника).


10.  Второй этап компоновки редуктора

Вычерчиваю шестерню и колесо по конструктивным размерам, найденным ранее. Шестерню выполняю за одно целое с валом.

Конструирую узел ведущего вала:

а) наношу осевые линии, удаленные от середины редуктора на расстояние l1. Использую эти линии для вычерчивания в разрезе подшипников качения (при этом использую правила упрощения, определенные ГОСТ 2.305-68);

б) между торцами подшипников и внутренней поверхностью стенки корпуса вычерчиваю мазеудерживающие кольца. Их торцы должны выступать внутрь корпуса на 1 ¸ 2 мм от внутренней стенки, в этом случае, эти кольца будут играть роль еще и маслоотбрасывающих колец. Для уменьшения числа ступеней вала кольца устанавливаем на тот же диаметр, что и подшипники (Ç 40 мм). Фиксация их в осевом направлении осуществляется заплечиками вала и торцами внутренних колец подшипников;

в) вычерчиваю крышки подшипников с уплотнительными прокладками (s ≈ 1 мм) и болтами. Болт условно помещается в плоскость чертежа.

Войлочные и фетровые уплотнения применяются в основном в узлах, заполненных консистентной смазкой, манжетные уплотнения могут применяться как с жидкой, так и с консистентной смазкой.

Длина присоединительного конца вала Ç 45 мм определяется длиной ступицы муфты. Для муфты МУВП 8-710-45-2-48-2-У3 ГОСТ 21424-75 l = 82 мм.

Аналогично конструирую узел ведомого вала, учитывая при этом следующие особенности:

а) для фиксации зубчатого колеса в осевом направлении предусматривается утолщение вала с одной стороны и установка распорной втулки — с другой; место перехода вала от Ç 50 мм к Ç 45 мм смещается на 2 — 3 мм внутрь распорной втулки с тем, чтобы гарантировать прижатие мазеудерживающего кольца к торцу втулки (а не к заплечику вала!);

б) отложив от середины редуктора расстояние l2, провожу осевые линии и вычерчиваю подшипники, при этом оси подшипников ведущего и ведомого валов располагаю на одной прямой;

в) вычерчиваю мазеудерживающие кольца, крышки подшипников с прокладками и болтами;

г) откладываю расстояние l3 и вычерчиваю шестерню открытой передачи; ступица шестерни может быть смещена в одну сторону для того, чтобы вал не выступал за пределы редуктора на большую длину.

д) от осевого перемещения шестерня фиксируется торцовым креплением. Шайба прижимается к торцу ступицы одним болтом. Между шайбой и торцом вала предусматриваю зазор в 2 мм, для обеспечения натяга.

На ведущем и ведомом валу применяю призматические шпонки со скругленными торцами по ГОСТ 23360-78. Шпонки вычерчиваю из расчета, что их длины на 5 – 10 мм меньше длины ступицы.


11.  Проверка прочности шпоночных соединений

Выбираю шпонку призматическую со скругленными торцами по ГОСТ 23360-78.

Материал шпонок – сталь 45, нормализованная. Напряжение смятия и условие прочности определяются из выражения

Допускаемые напряжения смятия при стальной ступице [σсм] = 100 ¸ 120 МПа, при чугунной [σсм] = 50¸70 МПа

Ведущий вал: d = 38 45 мм; bхh = 14 x 9 мм; t1 = 5,5 мм, длина шпонки l = 70 мм (при длине ступицы полумуфты 82 мм); момент на ведущем валу Т2 = 122*103 Н·мм

МПа <[σсм]

(материал полумуфт МУВП – чугун марки СЧ 20 ГОСТ 1420-85)

Ведомый вал: из двух шпонок – под зубчатым колесом и шестерней - более нагружена вторая (меньше диаметр вала и поэтому меньше размеры поперечного сечения шпонки). Проверяем шпонку под шестерней: d = 45 мм; b x h = 14 x 9; t1 = 5,5 мм, длина шпонки l = 63 мм (ширина шестерни 30 мм, ступицы 70 мм); момент на ведомом валу Т2 = 431,4*103Н·мм

 МПа <[σсм]

шестерня выполняется из термообработанных углеродистых сталей.


12. Уточненный расчет валов

Принимаю, что нормальные напряжения от изгиба изменяются по симметричному циклу, а касательные от кручения по пульсирующему.

Уточненный расчет состоит в определении коэффициентов запаса прочности s для опасных сечений и сравнении их с требуемыми (допускаемыми) значениями [s], прочность будет соблюдена при условии s³ [s].

Расчет производится для предположительно опасных сечений каждого из валов. Ведущий вал:

Материал вала тот же, что и для шестерни (выполнена заодно с валом), т.е. сталь 45, термическая обработка – улучшение.

При диаметре заготовки 90 ¸ 120 мм (da1 = 84 мм) табл.3.3 [1] среднее значение σв = 730 МПа.

Предел выносливости при симметричном цикле изгиба

σ-1 ≈ 0,43σв = 0,43*730 = 313,9 МПа.

Предел выносливости при симметричном цикле касательных напряжений

t-1 ≈0,58 σ-1 =0,58*313,9 = 182,1МПа.

Сечение по месту насаживания полумуфты, при передаче вращающего момента от электродвигателя рассчитываю на кручение. Концентрацию напряжения вызывает наличие шпоночного паза. Коэффициент запаса прочности

,

где амплитуда и среднее напряжение пульсирующего цикла


при d = 45 мм ; b = 14 мм ; t1 = 5,5 мм (по табл. 8.5 [1])

принимаю kτ = 1,68 (табл. 8.5 [1]), ετ ≈ 0,76 (табл.8.8[1]) и

ψ τ ≈0,1 [1]

ГОСТ 16162-78 определяет, что конструкция редуктора должна предусматривать возможность восприятия радиальной консольной нагрузки, приложенной в середине посадочной части вала. Величина этой нагрузки для одноступенчатых зубчатых редукторов на быстроходном валу должна быть  при 25*10 3 Н·мм< ТБ < 250*10 3 Н·мм.

Принимаю у ведущего вала длину посадочной части под муфту равной длине полумуфты l = 82 мм (муфта УВП для вала диаметром 45 мм), изгибающий момент в этом сечении от консольной нагрузки М = 2,5*(182,1*10 3) 1/2*(82/2) = 87,5*10 3 Н·мм.

Коэффициент запаса прочности по нормальным напряжениям


Результирующий коэффициент запаса прочности

Коэффициент запаса, полученный в расчетах , результирующий получился меньше, т.к. консольные участки валов, рассчитываются по крутящему моменту и согласовываются с расточками стандартных полумуфт и являются прочными. Такой большой запас прочности (70,62 и 1,19) объясняется тем, что диаметр вала был увеличен при конструировании для соединения его со стандартной муфтой с валом электродвигателя.

Поэтому проверку прочности вала в других сечениях нет необходимости.

Ведомый вал.

Материал вала – сталь 45 нормализованная, σВ = 570МПа.

Пределы выносливости σ-1 = 0,43*570 = 245 МПа и τ-1 = 0,58*245 = 142 МПа. Сечение А-А: диаметр вала в этом сечении 50 мм. Концентрация напряжений обусловлена наличием шпоночной канавки (табл. 8.5 [1]): kσ = 1,59 и kτ =1,49; масштабные факторы εσ =0,775;

ετ = 0,67 (табл. 8.8 [1]); коэффициенты ψσ ≈ 0,15 и ψτ ≈0,1.

Крутящий момент Т2 = 431,4*10 3 Н·мм.

Изгибающий момент в горизонтальной плоскости

изгибающий момент в вертикальной плоскости


суммарный изгибающий момент в сечении А – А

.

Момент сопротивления кручению (d = 50 мм; b = 14 мм; t1 = 5,5 мм)

Момент сопротивления изгибу (табл.8.5 [1])

Амплитуда и среднее напряжение цикла касательных напряжений

.

Амплитуда нормальных напряжений изгиба

;

среднее напряжение σm = 0.

Коэффициент запаса прочности по нормальным напряжениям


Коэффициент запаса прочности по касательным напряжениям

Результирующий коэффициент запаса прочности для сечения А – А

Сечение К – К. концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом (табл.8.7 [1]) kσ/εσ = 3,1 и kτ/ετ = 2,26; принимаю ψσ= 0,15 и ψτ = 0,1.

Изгибающий момент

Н·мм

Осевой момент сопротивления

мм3

Амплитуда нормальных напряжений


МПа; σm = 0.

Полярный момент сопротивления

WP = 2W = 2*8,9*103 = 17,8*103 мм3

Амплитуда и среднее напряжение цикла касательных напряжений

МПа

Коэффициент запаса прочности по нормальным напряжениям

Коэффициент запаса прочности по касательным напряжениям

Результирующий коэффициент запаса прочности для сечения К – К

Сечение Л – Л. Концентрация напряжений обусловлена переходом от Ç 45 мм к Ç 42 мм: при D/d = 45/42 ≈1,1 и r/d = 2,5/42 ≈ 0,06 коэффициенты концентраций напряжений kσ = 1,51 и kτ = 1,16 (табл. 8.2 [1]). Масштабные факторы εσ = 0,84; ετ = 0,72 (табл. 8.8 [1]). Внутренние силовые факторы те же, что и для сечения К – К.

Осевой момент сопротивления сечения

мм3

Амплитуда нормальных напряжений

МПа

Полярный момент сопротивления

WP = 2*7,3*103 = 14,6*103 мм3

Амплитуда и среднее напряжение цикла касательных напряжений

МПа

Коэффициенты запаса прочности

Результирующий коэффициент запаса прочности для сечения Л – Л

Сечение Б – Б. Концентрация напряжений обусловлена наличием шпоночной канавки: kσ = 1,6 и kτ = 1,5; εσ = 0,84 и ετ =0,72.

Изгибающий момент (х1 = 60 мм)

МБ – Б = FB x1 = 2617*60 = 157*103 Н·мм.

Момент сопротивления сечения нетто при b =12 мм и t1 = 5,0 мм

мм3.

Амплитуда нормальных напряжений изгиба

МПа.

Момент сопротивления кручению сечения нетто

мм3

Амплитуда и среднее напряжение цикла касательных напряжений

МПа

Коэффициенты запаса прочности

Результирующий коэффициент запаса прочности для сечения Б – Б

Объединяю результаты в таблицу:

Таблица №3

сечение А - А К - К Л - Л Б - Б
Коэффициент запаса s 5,89 2,83 3,69 4,07

Во всех сечениях коэффициент запаса s ˃ [s] = 2,5 (стр. 162[1]).


13.  Посадки зубчатого колеса, шестерни и подшипников

Посадки назначаю в соответствии с указаниями, данными в таблице 10.13 [1]

Посадка зубчатого колеса и шестерни на вал по ГОСТ 25347-82.

Шейки валов под подшипники выполнить с отклонением вала k6, отклонения отверстий в корпусе под наружные кольца по Н7.

Полумуфту на ведущий вал напресовать по ГОСТ 25347-82.

Мазеудерживающие кольца по ГОСТ 25347-82.


14.  Выбор сорта масла

Смазывание зубчатого зацепления производится окунанием зубчатого колеса в масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение колеса примерно на 10 мм. Объем масляной ванны V определяем из расчета 0,25 дм3 масла на 1 кВт передаваемой мощности: V= = 0,25 • 12,7 « 3,2 дм3.

По таблице 10.8 [1] устанавливаем вязкость масла. При контактных напряжениях σН < 600 МПа и скорости v = 3,93 м/с рекомендуемая вязкость масла должна быть примерно равна 28 • 10-6 м2/с. По таблице 10.10 [1] принимаем масло индустриальное И-ЗОА (по ГОСТ 20799-75*).

Камеры подшипников заполняем пластичным смазочным материалом Литол – 24 ГОСТ 21150-75 (табл. 9.14 [1]) периодически пополняем его шприцем через пресс-масленки.


15.  Сборка редуктора

Перед сборкой внутреннюю полость корпуса редуктора тщательно очищают и покрывают маслостойкой краской.

Сборку производят в соответствии со сборочным чертежом редуктора, начиная с узлов валов:

на ведущий вал насаживают мазеудерживающие кольца и шарикоподшипники, предварительно нагретые в масле до 80 —100 °С;

в ведомый вал закладывают шпонку 16х10х60 и напрессовывают зубчатое колесо до упора в бурт вала; затем надевают распорную втулку, мазеудерживающие кольца и устанавливают шарикоподшипники, предварительно нагретые в масле.

Собранные валы укладывают в основание корпуса редуктора и надевают крышку корпуса, покрывая предварительно поверхности стыка крышки и корпуса спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу.

После этого на ведомый вал надевают распорное кольцо, в подшипниковые камеры закладывают пластичную смазку, ставят крышки подшипников с комплектом металлических прокладок для регулировки.

Перед постановкой сквозных крышек в проточки закладывают войлочные уплотнения, пропитанные горячим маслом. Проверяют проворачиванием валов отсутствие заклинивания подшипников (валы должны проворачиваться от руки) и закрепляют крышки винтами.

Далее на конец ведомого вала в шпоночную канавку закладывают шпонку, устанавливают шестерню и закрепляют ее торцовым креплением; винт торцового крепления стопорят специальной планкой.

Затем ввертывают пробку маслоспускного отверстия с прокладкой и жезловый маслоуказатель.

Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой из технического картона; закрепляют крышку болтами.

Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, устанавливаемой техническими условиями.


Список использованной литературы

1.  С.А. Чернавский и др. Курсовое проектирование деталей машин.М.: АльянС, 2005.

2.  М.Н. Иванов. Детали машин. М.: «Машиностроение», 1991.

3.  П.Ф. Дунаев, О.П. Леликов Конструирование узлов и деталей машин. М.: «Высшая школа», 1985.

4.  Д.Н. Решетов – Детали машин. Атлас конструкций в двух частях. М.: «Машиностроение», 1992.

5.  Анурьев В.И. Справочник конструктора-машиностроителя в 3т. М. Машиностроение, 1979.


Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.