рефераты скачать

МЕНЮ


Курсовая работа: Проектирование узловой подстанции 220/35/10

Вторичная нагрузка трансформатора определяется по формуле:

S2Σ =  = 68 В·А

Выбор трансформатора напряжения сводится в табл. 5.19;

Таблица 5.19 Выбор трансформатора напряжения на стороне НН

Условия выбора Расчетные данные Трансформатор напряжения
Класс точности 0,5 0,5

Uуст ≤ Uном

10 кВ 10 кВ

S2Σ ≤ Sном

68 В·А 75 В·А

Окончательно принимаем ТН марки НАМИ – 10

5.3 Выбор ОПН

Ограничители предназначены для защиты изоляции электрооборудования переменного тока частотой 50 Гц электрических сетей напряжением от 0,5 до 500 кВ от атмосферных и коммутационных перенапряжений.

В настоящее время проведены разработки, испытания и освоение ОПН на классы напряжения от 0,5 до 500 кВ.

Большинство конструкций ОПН выполнены на базе существующих полимерных конструкционных материалов (кремний, органические резиновые смеси, стеклоткани и стеклопластиковые трубы), позволивших создать на их основе ОПН с высокими эксплуатационными и технологическими свойствами:

– высокая механическая прочность в диапазоне температур от минус 60 С до плюс 50 С;

– ударопрочность;

– взрывобезопасность;

– сейсмостойкость;

Ограничители на классы напряжения от 3 до 10 кВ представляют собой монолитную конструкцию. Волоконноусиленный материал наносится непосредственно на колонку оксидно-цинковых варисторов с контактами. На изготовленный таким образом блок непосредственно напрессовывается кремнийорганическая резина, обеспечивая высокую степень герметичности.

Ограничитель на 220 кВ конструктивно представляет собой высоконелинейный резистор, состоящий из соединенных последовательно дисков оксидно-цинковых варисторов, заключенный в герметичную полимерную изоляционную покрышку.

Условие:

1.  по напряжению

Uраб≥Uсети (5.23)

Uсети=1,5*Uном (5.24)

Uраб=√3*Uном.раб, (5.25)

где U р. – рабочее напряжение.

Принимаем ОПН марки ОПН/ТЕL(УХЛ 1) соответственно для каждого класса напряжения:

ОПН/ТЕL- 220/154 для 220 кВ:

Uраб=154=266кВ;

Uсети=1,15·220=253 кВ;

266 кВ ≥ 253 кВ, следовательно, ОПН-220/154 проверку прошел.

ОПН/ТЕL-35/24

Uраб=24= 41,52 кВ;

Uсети=1,15·35= 40,25 кВ;

41,52 кВ ≥ 40,25 кВ, следовательно, ОПН-35/24 проверку прошел.

ОПН/ТЕL-10/12,5

Uраб=12,5*√3=21,7 кВ;

Uсети=1,15·10=11,5 кВ;

21,7 кВ ≥ 11,5 кВ, следовательно, ОПН-10/11,5 проверку прошел.

5.4 Выбор гибких и жестких шин

Выбор токопроводов на стороне 220 кВ и 35 кВ

В РУ 35 кВ и выше применяются гибкие шины, выполненные проводами АС, обладающие малым удельным сопротивлением и хорошей механической прочностью.

1) При проектировании жестких и гибких шин выбор сечений производят по допустимым значениям тока для стандартных сечений. Основным параметром для выбора сечения является величина рабочего тока.

2) Выбранное сечение необходимо проверить по нагреву в аварийном режиме, когда одна из цепей отключена:

Iдл доп > Iав, (5.26)

где Iдл доп –длительно допустимый ток для выбранного сечения линии, A.

Iав – аварийный ток, A.

Аварийный ток определяется по формуле:

Iав=2· Iраб; (5.27)

3) По условиям короны:

1,07∙Е ≤ 0,9∙Е0;(5.28)

где Е – напряженность электрического поля около поверхности провода, кВ/см;

Е0 – начальная критическая напряженность электрического поля, кВ/см;

Е0 = ,(5.29)

где m – коэффициент, учитывающий шероховатость поверхности провода (для многопроволочных проводов m=0,82);

r0 – радиус провода, см;

Напряженность электрического поля около поверхности нерасщепленного провода:

Е = ;(5.30)

где U – линейное напряжение, кВ;

Dср – среднегеометрическое расстояние между проводами фаз, см;

При горизонтальном расположении фаз:

Dср = 1,26∙D,(5.31)

где D – расстояние между проводами фаз (для U=220 кВ – D=1800 мм,U=35 кВ – D=400 мм), см; [8],

Напряженность электрического поля около поверхности расщепленного провода:

Е = ,(5.32)

где k – коэффициент, учитывающий количество проводов n в фазе;

rэк – эквивалентный радиус проводов, см;

4) Выбранные провода должны быть проверены по ветровым нагрузкам и нагрузкам по гололеду в соответствии с ПУЭ.

Fэ ≥ Fminмех;(5.33)

Минимальное сечение по условию механической прочности для III района по гололеду и проводов из сталеалюминия:

Fminмех = 50 мм2.

qmin=

5) На термическое и электродинамическое действия токов короткого замыкания проверяют гибкие шины РУ при I(3)по> 20 кA.

Если какое-либо из условий проверки не выполняется, следует увеличить сечение провода.

Выберем сечение проводов для гибкой ошиновки РУВН:

1) Выбор сечения по допустимому току:

Рабочий ток в цепи трансформатора на РУВН:

Iраб = 118 А принимаем провод АС 240/32;

2) Проверка выбранного сечения на нагрев провода:

Ток послеаварийного режима:

Iав = 2·Iраб = 236 А,

I дл доп = 605 А,

605 А > 236 А.

3) Проверка выбранного сечения по условию короны:

1,07∙Е ≤ 0,9∙Е0;

Е0 = = 29,82 кВ/см;

Е = = = 13,5 кВ/см;

1,07∙13,5= 14,45 кВ/см  0,9 ∙29,82= 26,84 кВ/см.

4) Проверка выбранного сечения по механическим нагрузкам:

F ≥ Fminмех,

240 мм2 > 50 мм2

qmin=мм2

q≥qmin - условие выполняется

5) Проверка по термическому и электродинамическому действию токов короткого замыкания:

Гибкие провода, по которым возможно протекание тока короткого замыкания меньше 20 кА термическую и электродинамическую стойкость не проверяются.

Все условия выполняются. Окончательно принимаем к установке гибкие шины из сталеалюминевых проводов АС 240.

Выберем сечение проводов для гибкой ошиновки РУСН:

1) Выбор сечения по допустимому току:

Iраб = 462 А, принимаем провод АС 300/32;

2) Проверка выбранного сечения на нагрев провода:

Ток послеаварийного режима:

Iав = 2 Iраб = 924 А,

I дл доп = 1000 А

1000 А > 924 А.

3) Проверка выбранного сечения по условию короны:

1,07∙Е ≤ 0,9∙Е0;

Е0 = = 28,82 кВ/см;

Е =  = = 4,19 кВ/см;

1,07∙4,19= 4,49 кВ/см  0,9 ∙28,82= 25,34 кВ/см.

4) Проверка выбранного сечения по механическим нагрузкам:

F ≥ Fminмех,

300 мм2 > 50 мм2.

qmin==83 мм2

q≥qmin - условие выполняется

5) Проверка по термическому и электродинамическому действию токов короткого замыкания:

Гибкие провода, по которым возможно протекание тока короткого замыкания меньше 20 кА термическую и электродинамическую стойкость не проверяются.

Все условия выполняются. Окончательно принимаем к установке гибкие шины, с расщепленными надвое жилами, из алюминиевых проводов АС 240.

Выбор жестких шин на стороне 10 кВ

Для общей ошиновки предусматриваем алюминиевые шины прямоугольного сечения.

Сборные шины и ответвления от них к электрическим аппаратам (ошиновка) 6-10 кВ из проводников прямоугольного или коробчатого профиля крепятся на опорных фарфоровых изоляторах. Шинодержатели, с помощью которых шины закреплены на изоляторах, допускают продольное смещение шин при их удлинении вследствие нагрева. При большой длине шин устанавливаются компенсаторы из тонких полосок того же материала, что и шины. Концы шин на изоляторе имеют скользящее крепление через продольные овальные отверстия и шпильку с пружинящей шайбой. В местах присоединения к аппаратам изгибают шины или устанавливают компенсаторы, чтобы усилие, возникающее при температурных удлинениях шин, не передавалось на аппарат.

1.Выбираем сечение шин по длительно допустимому току нагрузки:

Imax = 981 А;

Принимаем однополюсные шины алюминиевые прямоугольного сечения

S=80×8, с Iдл.доп =1320 А;

Так как Iдл.доп.>Imax , то шины выбраны правильно. (5.34);

2. Проверка по термической стойкости.

Для шин, выполненных из алюминия допустимая температура нагрева при коротком замыкании 200 0С, коэффициент C=91 А·с1/2 /мм . Исходя из этого определяется минимально допустимое по нагреву сечение :

qminтерм =  = = 76мм2, (5.35);

где Bк – тепловой импульс при протекании тока короткого замыкания.

Для выбранных шин qmin составляет 480 мм2,

qminтерм < qдоп , условие выполняется,

3.  Проверка на механическую прочность.

При механическом расчете однополюсных шин наибольшая сила f, действующая на шину средней фазы (при расположении шин в одной плоскости), определяется при трехфазном коротком замыкании по формуле:

f=(5.36);

где iуд – ударный ток при трехфазном коротком замыкании, A;

l – длина пролета между опорными изоляторами шинной конструкции, м; (рекомендуется l = 1-1,5 м);

а – расстояние между фазами, м;

Сила f создает изгибающий момент (М), Н·м, при расчете которого шина рассматривается как многопролетная балка, свободно лежащая на опорах.

Выбранные шины проверяем на динамическую устойчивость:

f=== 117,54 кг·с/см2 – (5.37);

f - сила, действующая на шину.

Сила f создает изгибающий момент (М), Н·м, при расчете которого шина рассматривается как многопролетная балка, свободно лежащая на опорах.

момент сопротивления шины относительно оси, перпендикулярной действию силы, см3 ,

=20 см3

Напряжение в материале шин, Мпа, возникающее при воздействии σрасч изгибающего момента:

σрасч =  = = 8,82 МПа,

Шины механически прочны, если выдерживается условие:

σрасч ≤ σдоп

σдоп = 40 Мпа, [1,табл. 4.2]

Окончательно принимаем шины Sm =80 × 8 алюминиевые марки АДО

5.5 Выбор опорных и проходных изоляторов на РУНН

Выбор опорных изоляторов

Опорные изоляторы выбираются по следующим условиям:

1) по номинальному напряжению:

Uуст ≤ Uном ; (5.38)

2) по допустимой нагрузке:


Fрасч ≤ Fдоп, (5.39)

где Fрасч – сила, действующая на изолятор, Н;

Fдоп – допустимая нагрузка на головку изолятора, Н.

Fдоп = 0,6 Fразр, (5.40)

где Fразр – разрушающая нагрузка на изгиб, Н.

Для крепления шин 10 кВ применяются опорные изоляторы для внутренней установки типа ИО-10-3,75 УЗ с Fразр= 3750 Н.

При расположении шин в вершинах равнобедренного треугольника силу, действующую на изолятор, рассчитаем по формуле [2, стр. 227]:

Fрасч = = = 117,54 Н,

Fрасч < 0,6∙Fразр,

117,54 Н 0,6∙3750= 2250 Н,

Окончательно выбираем опорный изолятор ИО-10-3,75 У3.

Выбор проходных изоляторов

1) по напряжению (формула 5.38);

2) по номинальному току:

Imax ≤ Iном , (5.41);

где Imax – максимальный рабочий ток, проходящий через изолятор;

Iном – номинальный ток изолятора (по справочным данным).

1963 А ≤ 2000 А

3) по допустимой нагрузке (формула 5.39);

Для проходных изоляторов расчетная сила f расч, Н:

f =0,5 · =0,5 ·  = 58,8 H;

В качестве проходных изоляторов на стороне 10 кВ принимаем изоляторы типа ИП-10-2000-У, Uh = 10 kB, Iн = 2000 A, Fн = 3 кН.

Fрасч < 0,6∙Fразр,

58,8 Н < 3750∙0,6=1800 Н.

5.6 Выбор трансформатора собственных нужд и плавкого предохранителя

Выбор трансформатора с.н.

Выбор трансформатора собственных нужд зависит от состава потребителей, что в свою очередь зависит от типа подстанции, мощности трансформаторов, наличия синхронных компенсаторов и типа электрооборудования.

Мощность трансформаторов с.н. выбирается по нагрузкам с.н. с учетом коэффициентов загрузки и одновременности, при этом отдельно рассчитывается летняя и зимняя нагрузки, а так же нагрузка в период ремонтных работ на подстанции.

В учебном проектировании можно по ориентировочным данным

[2, приложение, таб. П6.1 и П6.2] определить основные нагрузки с.н. подстанции, приняв для двигательной нагрузки соsφ=0,85.

Представим основные нагрузки с.н. в таблице:

Таблица.5.20. Основные нагрузки с.н.

Вид потребителя Уст. Мощность соsφ Нагрузка
кВт х кол-во всего, кВт Pуст, кВт Qуст, кВАр
Охлаждение ТДТН 63000/220 - 3 0,85 3 2,55
Подогрев ВГУ– 220–45/3150 У1 42,9х8 343 1 343 -
Подогрев ВГК–35–40/3150 4,4 х 1 4,4 1 4,4 -
Подогрев КРУ 1 х 18 18 1 18 -
Отопление и освещение ОПУ - 80 1 80 -
Освещенеие, Вентиляция ЗРУ - 7 1 7 -
Освещение ОРУ 220 кВ - 5 1 5 -
Освещение ОРУ 35 кВ - 5 1 5 -
Итого: 465,4 2,55

Мощность трансформаторов с.н. выбирается:

при двух трансформаторах с.н. на ПС без постоянного дежурства

, где

 - мощность трансформатора с.н.;

 - расчетная мощность всех потребителей;

, где

 - коэффициент спроса, учитывающий коэффициенты одновременности и загрузки. В ориентировочных расчетах можно принять =0,8.

Предельная мощность каждого трансформатора с.н. должна быть не более 630 кВА.

Sрасч=

Принимаем трансформатор типа ТСЗ-400/10 [7, стр. 120].

Выбор плавкого предохранителя

Предохранитель – это устройство, служащее для отключения электрооборудования при возникающих КЗ, путем перегорания его плавкой вставки.

Выбор предохранителя производится:

1.  по напряжению установки ;

2.  по току ;

3.  по току отключения .

Выбираем предохранитель марки ПКТ101-10-10-31,5 У3 [7, стр. 254].

Характеристики:

Номинальное напряжение Uном=10 кВ;

Номинальный ток Iном=10 А

Номинальный ток отключения Iоткл.ном=31,5 кА

Предохранитель устанавливается в цепи трансформатора напряжения. Ток в первичной цепи ТН находим по выражению:

, где

 - мощность, потребляемая вторичной нагрузкой ТН;

 - вторичное напряжение трансформатора (100В)

 - коэффициент трансформации ТН

().

Таблица 5.21. Условия выбора предохранителя.

Расчетные данные Паспортные данные Условия выбора

Uсети.уст=10 кВ

Iраб.мах=8 А


Заключение

При проектировании данной узловой подстанции было определено, что при выборе электрической схемы нужно исходить из соображений надежности, экономичности и безопасности. Выбор схемы зависит от категории потребителей электрической энергии. Вследствие этого было установлено два силовых трансформатора. Исходя из этих условий был выбран наиболее рациональный вариант схемы. Также в данном проекте было рассмотрено, как и по каким критериям выбирать электрооборудование. Оборудование выбрано современное, так как в настоящее время на новых энергообъектах устанавливается новое оборудование. Которое по своим характеристикам превосходит устаревшее оборудование. Следовательно, это позволяет увеличить срок службы подстанции и сократить расходы на постройку подстанции. Было установлено, что все оборудование соответствует критериям выбора. В итоге всего расчёта мною было изучено, по каким правилам и нормам выбирать и проектировать подстанцию


Список литературы

1. Барыбин Ю.Т. Справочник по проектированию эл.снабжения, 1990

2. Поспелов Г.Е.- Электрические системы и сети.-1978.

3.Справочник по новому электрооборудованию в системах электроснабжения /Ополева Г. Н. – Иркутский гос. Университет,2003.

4. Л. Д. Рожкова, Л. К. Карнеева, Т. В. Чиркова. Электрооборудование электрических станций и подстанций. – М.: Издательский центр «Академия», 2004.

5. Правила устройства электроустановок: Все действующие разделы ПУЭ-6 и ПУЭ-7. 7-й выпуск.

6. Справочник по электроснабжению промышленных предприятий/Под ред. А. А. Федоров, Г. В. Сербиновского.- М.: Энергия, 1973.

7. Б.Н. Неклепаев – Электрическая часть электростанций и подстанций.- М: Энергоатомиздат, 1989.

8. Герасимова – Электротехнический справочник, 2007.

9. http://www.laborant.ru


Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.