рефераты скачать

МЕНЮ


Курсовая работа: Проект цеха по производству полимер-песчаной черепицы

Курсовая работа: Проект цеха по производству полимер-песчаной черепицы

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

на тему: «Проект цеха по производству полимерпесчаной черепицы». Производительностью 4018м3 в год (1,96 млн. шт. в год)».

 


Введение

Общие сведения о полимербетонах

Среди крупнейших потребителей полимерных материалов на одном из первых мест стоит строительная индустрия. Широкому применению полимерных материалов в строительстве способствуют не только высокая химическая стойкость, хорошие декоративные свойства многих из них, но и сравнительная простота применения, технологичность и другие свойства. Следует, однако, отметить, что на многих промышленных предприятиях в условиях сильного агрессивного воздействия повышенного давления и температуры термопластичные полимерные материалы быстро стареют, а незаполненные термореактивные, имея высокий коэффициент температурных деформаций, отслаиваются от защищаемых конструкций. Как показывает практика эксплуатации многих промышленных предприятий, защита строительных конструкций полимерными покрытиями малоэффективна и во многих случаях не обеспечивает необходимой надежности и долговечности сооружений.

В связи с этим в самых разнообразных отраслях промышленности все ощутимей сказывается отсутствие строительных материалов, которые сочетали бы высокую химическую стойкость с высокой прочностью и долговечностью.

Успехи химии в области синтеза полимеров открывают практически неограниченные возможности для изготовления материалов с самыми разнообразными свойствами. Открытие новых способов синтеза и модифицирования полимеров позволяет получать новые виды мономеров и олигомеров, сополимеров – блоксополимеров и привитых сополимеров.

В то же время необходимо отметить, что полимерные материалы, и в том числе синтетические смолы, еще сравнительно дороги и дефицитны, поэтому применение их в строительстве наиболее рационально в виде высоконаполненных композиций. Полимербетоны представляют собой новые эффективные химически стойкие материалы, у которых степень наполнения минеральными наполнителями и заполнителями доходит до 90–95% массы. Эти новые материалы, созданные советскими учеными, стоят вне конкуренции с другими наполненными полимерными композициями по расходу полимерного связующего, которое составляет всего 5–10% общей массы полимербетона; естественно, стоимость такого материала сведена к минимуму. При сравнительно небольшом расходе полимерного связующего на единицу массы полимербетоны обладают высокой плотностью, прочностью, химической стойкостью и многими другими положительными свойствами. Соответствующий выбор связующего, наполнителей и заполнителей позволяет получать полимербетоны с высокими диэлектрическими характеристиками или, наоборот, обладающие хорошей электропроводностью. Разработаны составы специальных бетонов с высокими защитными свойствами от различных излучений. При этом высокая степень наполнения позволяет резко снизить усадку, которая становится равной усадке цементных бетонов, и существенно повысить модуль упругости, что позволяет применять такие бетоны в несущих и весьма ответственных конструкциях. Например, разработаны составы тяжелых полимербетонов плотностью 2200–2400 кг/м3, имеющих предел прочности на сжатие: на основе фенолоформальдегидных смол 40–60, карбамидных 50–80, полиэфирных 80–120 и фураново-эпоксидных до 160 МПа.

Эксплуатация полимербетонных изделий и конструкций, в том числе различных емкостей, травильных и электролизных ванн, в производственных условиях при воздействии высокоагрессивных сред показала их высокую надежность и эффективность. Среди наиболее интересных областей применения в зарубежной практике следует отметить использование полимербетонов для изготовления труб, коллекторов, емкостей для хранения агрессивных жидкостей, при строительстве подводных сооружений, ремонте и восстановлении строительных конструкций. Новым и весьма эффективным является употребление полимербетонов (вместо металла) для изготовления корпусов редукторов, центробежных насосов и тому подобных изделий, а также станин высокоточных станков.

В настоящее время в зарубежных странах для изготовления полимербетонов применяют около 10 типов различных мономеров или олигомеров, которые в комбинациях с модифицирующими добавками позволяют получить более 30 разновидностей полимербетонов. Однако наибольшее предпочтение по-прежнему уделяется полимербетонам на основе полиэфирных и эпоксидных смол и мономера метилметакрилата.

Расчеты ученых показали, что если принять условные энергозатраты на единицу массы при производстве бетона равными 1, то для полимербетонов они будут составлять 2,5, стали 5–7, фарфора для изоляторов 5–10 и алюминия 7,5–10. Если ввести коэффициент экономической эффективности (отношение экономического эффекта от улучшения свойств к стоимости материала) и принять его равным 1 для обычного бетона, то для бетонополимеров этот коэффициент доходит до 3, а для полимербетонов до 4 и выше. Эти данные подтверждают высокую экономическую эффективность применения полимербетонов в различных отраслях промышленности и строительства.

Классификация полимербетонов

Поиск путей повышения прочности, плотности, химической стойкости и долговечности бетона и железобетона привели к созданию обширной группы полимербетонов с добавками полимеров или на основе полимеров, названия которых складывались произвольно и без должного обоснования. Например, цементные бетоны с добавками полимеров одни авторы называли полимерцементными, другие цементно-полимерными бетонами, подчеркивая, что полимерные добавки только улучшают свойства цементного вяжущего. Бесцементные бетоны на синтетическом связующем (полимербетоны) именовались щебеночными пластбетонами, пластобетонами, органоминеральными бетонами и т.п. Иногда полимербетонами называли полимеррастворы, мастики и другие подобные материалы. Такая произвольно сложившаяся терминология вносила путаницу, а иногда и затрудняла понимание описываемых явлений.

По настоящей классификации специальные бетоны с добавками полимеров или на их основе (П-бетоны) делятся на следующие виды:

минералополимерные бетоны (МПБ) – бетоны с минеральными наполнителями, обработанными полимерами;

полимернаполненные бетоны (ПНБ) кроме минеральных наполнителей и заполнителей содержат полимерные наполнители;

модифицированные бетоны (МБ) – бетоны с малыми добавками полимеров;

фибробетоны (ФБ) – бетоны, армированные стальным, стеклопластиковым или полимерным волокном;

полимерцементные бетоны (ПЦБ) представляют собой цементные бетоны, в процессе приготовления которых в смесь добавляют кремнийорганические или водорастворимые олигомеры и полимеры, водные эмульсии типа поливинилацетатной, водорастворимые эпоксидные смолы и др.;

полимерсиликатные бетоны (ПСИБ) – кислотостойкие бетоны на основе жидкого стекла, в состав которых в процессе приготовления вводят полимерные добавки. Введение в состав таких бетонов фурилового спирта или некоторых других олигомеров делает полимерсиликатные бетоны практически непроницаемыми для растворов различных кислот;

бетонополимеры (БП) – цементные бетоны, которые после завершения процессов твердения и структурообразования подвергают сушке и пропитке различными мономерами или олигомерами с их последующей радиационной пли термокаталитической полимеризацией в норовой структуре бетона. Пропитка цементных бетонов мономерами или олигомерами обеспечивает возможность получения бетонополимеров, обладающих высокими плотностью и прочностью;

серные и полимерсерные бетоны (ПСБ) – высоконаполненные композиции на основе расплавленной серы с различными модифицирующими добавками и минеральных заполнителей и наполнителей без использования минеральных вяжущих и воды; полимербетоны – высоконаполненные композиции, полученные на основе синтетических смол или мономеров и химически стойких наполнителей и заполнителей без участия минеральных вяжущих и воды.

К бетонополимерам с определенной натяжкой можно отнести и бетоны, пропитанные серой. Пропитка цементных бетонов расплавленной серой позволяет получать серные и полимерсерные бетоны с более низкими прочностными характеристиками, чем у бетонополимеров, но стоимость серы в 10 раз ниже стоимости мономеров, а процесс пропитки значительно проще.

Полимербетоны содержат в своем составе не менее трех фракций наполнителей и заполнителей: мелкодисперсные наполнители с размером частиц менее 0,15 мм, заполнители – песок с размером зерен до 5 мм и щебень с размером зерен до 50 мм. В отличие от полимербетонов полимеррастворы не содержат в своем составе щебня, мастики содержат только одну мелкодисперсную фракцию наполнителя.

Учитывая, что полимербетоны обладают более высокими положительными характеристиками по сравнению с другими видами П-бетонов и нашли наибольшее практическое применение в различных отраслях промышленности, этим материалам в дальнейшем и уделяется основное внимание.

Основные свойства полимербетонов определяются химической природой синтетической смолы, видом и содержанием мелкодисперсной фракции наполнителей. Крупные фракции заполнителей (песок и щебень), выполняя в основном роль скелета, влияют на основные физико-механические свойства в меньшей степени. Поэтому для неармированных материалов после слова «полимербетон» указывают сокращенное название полимерного связующего и вид мелкодисперсного наполнителя; для армированных материалов перед названием материала упоминают вид армирования, например полимербетон ФАМ на андезите, полимербетон ПИ на маршаллите, сталеполимербетон ФАМ на аглопорите и т.д.

Полимербетоны могут быть получены как на основе термореактивных, так и термопластичных полимеров. В то же время следует отметить, что полимербетоны, предназначенные для изготовления несущих строительных конструкций, изготовляют в основном на основе термореактивных смол, термопластичные же полимеры в большинстве случаев используются для полимербетонов, которые применяют в защитных облицовках и в виде декоративно-отделочных материалов.

Из большого разнообразия термореактивных и термопластичных смол эпоксидные и полиуретановые смолы еще дороги и дефицитны, поэтому полимербетоны на фурановых, фенольных, полиэфирных, карбамидных смолах и мономере ММА в настоящее время находят наибольшее распространение. Особенно перспективны для несущих конструкций легкие химически стойкие полимербетоны, на пористых заполнителях с плотностью = 1600… 1800 кг/ /м3 и прочностью на сжатие = 60…80 МПа. Все шире используются полимербетоны на фенольных и ацетоноформальдегидных смолах. Полимербетоны на фураново-эпоксидных компаундах типа ФАЭД применяются в гидротехнических сооружениях.

Весьма целесообразны сверхлегкие теплоизоляционные полимербетоны для ограждающих конструкций на основе карбамидных смол и полиизоцианатных композиций с использованием в качестве легких заполнителей перлита и пеностекла с плотностью р = 400…500 кг/м3 и прочностью на сжатие =5…6 МПа.

Удобоукладываемость полимербетона так же, как и цементных бетонов, определяется жесткостью смеси. Жесткость полимербетонных смесей зависит от вида и принятого количества синтетической смолы, от дисперсности наполнителя и соотношения между фракциями наполнителя и заполнителей. По жесткости полимербетонные смеси можно разделить на четыре основные группы. При этом меньшие значения количества смолы относятся к тяжелым бетонам, а большие – к легким на пористых заполнителях.

Перспективы развития технологии полимербетонных изделий и конструкций

Анализ опыта крупносерийного производства армополимербетопных изделий и конструкций позволил определить основные направления разработки более современной технологии изготовления армополимербетонных изделий и конструкций.

При производстве полимербетонов одним из наиболее энергоемких процессов является термообработка. Переход па термообработку с использованием теплоты, получаемой в результате саморазогрева полимербетонной смеси, позволил сократить расход электроэнергии.

Исследования низкочастотного виброформования высоконаполненных композиций свидетельствуют, что формование достаточно эффективно для армополимербетонных конструкций и должно найти более широкое применение на вновь строящихся цехах и заводах. Анализ различных способов отверждения полимербетонов показывает, что отвердение полимербетонов в обычных условиях при температуре 18–20 °С в течение 28–30 сут не может обеспечить максимально возможную полноту полимеризации полимерного связующего. Прогрев конструкций или изделий в течение 6–10 ч при 60–70 °С после суточной выдержки в обычных условиях также не обеспечивает необходимую полноту отверждения.

Предложенный способ – суточное отверждение при 18–20 °С и 20–24-часовой сухой прогрев при 80 °С – позволил получить максимально возможную на практике степень полимеризации для широкой номенклатуры армополимербетонных изделий и конструкций. Этот способ нашел применение на большинстве действующих предприятий по производству таких конструкций. Однако общее время отверждения составляет 44–48 ч, что существенно усложняет технологический процесс и удорожает стоимость полимербетонных конструкций.

На основании многочисленных исследований предложен новый способ термообработки, который заключается в следующем: после окончания формования полимербетонные изделия выдерживаются в форме при 18 – 20 °С в течение 1,5–2 ч. К этому времени под действием тепловыделения за счет экзотермической реакции полимеризации полимерного связующего температура полимербетонной смеси повышается до 60–70 °С. Разогретое изделие вместе с формой помещают в камеру термообработки, в которой температуру поднимают до 80 °С. При этой температуре изделие выдерживается 16–18 ч, после чего температура плавно снижается до 20–25 °С в течение 3–4 ч.

Однако потенциальные возможности полимербетонных смесей далеко не исчерпаны, и первостепенное значение приобретает разработка такого процесса отверждення, который позволит полностью отказаться от термообработки в специальных камерах при сохранении всех необходимых характеристик полимербетонов.

Известно, что термореактивные синтетические смолы в процессе отверждения в зависимости от вида смолы выделяют от 250–300 до 420–580 кДж на 1 кг ненаполненной смолы или от 60 000 до 140 000 кДж на 1 м3 тяжелого полимербетона.

Саморазогрев цементных бетонов растянут во времени и происходит плавно в течение нескольких суток, что затрудняет использовать метод термоса при отверждении цементных бетонов. У полимербетонов реакции полимеризации или поликонденсации полимерного связующего протекают очень интенсивно и время саморазогрева составляет 1,5–2 ч.

Такой характер кинетики саморазогрева полимербетонных смесей и значительное количество теплоты, выделяемой при этом, позволяют весьма эффективно использовать метод «термоса» для отверждения полимербетонных изделий и конструкций.

Результаты экспериментальной проверки показали, что при отверждении полимербетонов на основе ФАМ и ПН-1 объемом 0,15–0,20 м3 в форме, изолированной фенольным пенопластом толщиной 100 мм, в результате саморазогрева температура полимербетонной смеси подымалась до 90–100 °С, и сохранялась на этом уровне более 24 ч. При формовании изделия объемом больше 0,2 м3 и отверждении с использованием метода «термоса» температура саморазогрева может превышать 100 °С. При такой температуре саморазогрева в изделии возможно появление температурных трещин.

Для исключения трещинообразования предложен следующий способ отверждения с использованием метода «термоса». Изделие объемом более 0,2 м3 формуют в обычной металлической форме и выдерживают в ней 1,5–2 ч. К этому времени в основном заканчиваются процессы экзотермических реакций полимерного связующего, и смесь разогревается до максимально возможной температуры для данного вида полимербетона и принятой массы. После этого форму устанавливают на термоизолированный поддон, накрывают крышкой «термоса» (термоизолированным кожухом) и выдерживают в «термосе» 16–18 ч. Затем крышку снимают и изделие остывает до температуры 20–25 °С.

Физико-механические свойства полимербетонов, отверждениых методом «термоса», практически не отличаются от аналогичных свойств полимербетонов, прошедших термообработку по вышеописанным режимам.

Внедрение этого способа отверждения на вновь строящихся заводах позволит существенно снизить себестоимость полимербетонных конструкций, сократить расход электроэнергии и снизить капитальные затраты на строительство, так как отпадает необходимость в камерах термообработки.

Высокие диэлектрические характеристики полимербетонов обусловливают высокую эффективность использования энергии токов высокой частоты (ТВЧ) и сверхвысоких частот (СВЧ-энергии) для ускоренного отверждения мелкоштучных полимербетонных изделий. При этом нагреваемый материал характеризуется в основном двумя параметрами: диэлектрической проницаемостью и тангенсом угла диэлектрических потерь. Электрическая энергия, выделяемая в виде теплоты, пропорциональна произведению этих величин, и называется фактором или коэффициентом потерь.

Экспериментальные исследования показали, что при использовании серийных генераторов ТВЧ время полного отверждения полимербетонных кубиков с ребром 50 мм составляет 25–30 мин. К недостатку этого способа относится сравнительно большой расход электроэнергии, поэтому использование генераторов ТВЧ в промышленности можно рекомендовать в основном для отверждения контрольных образцов.

Исследования влияния СВЧ-нагрева на скорость отверждения полимербетонов свидетельствуют, что общее время СВЧ-нагревя полимербетонных смесей не превышает 3–4 мин. Характерная особенность СВЧ-нагрева – возможность получения достаточно высокой прочности при минимальном количестве отвердителя. Более продолжительное воздействие СВЧ-нагрева (более 3–4 мин) снижает прочностные характеристики, особенно для составов с повышенным содержанием отвердителя, что свидетельствует о появлении в образцах термической деструкции.

Максимальные значения прочностных характеристик и модуля упругости полимербетонов были получены уже при трехминутном воздействии СВЧ-нагрева. При использовании СВЧ-нагрева расходуется значительно меньше электроэнергии по сравнению с нагревом ТВЧ. К недостатку этого метода следует отнести отсутствие промышленных установок, пригодных для использования на предприятиях по производству полимербетонных изделий и конструкций.

Следует отметить, что для тонкостенных конструкций, имеющих небольшую массу и большую поверхиость теплоотдачи, большинство из приведенных способов термообработки (кроме СВЧ-нагрева) недостаточно эффективно. К числу таких полимербетонных конструкций относятся декоративно отделочные плиты, подоконные доски, лестничные марши, малые декоративные формы и др. Поэтому изыскание принципиально новых путей экономии энергозатрат на стадии термообработки весьма актуально.

Для решения этой проблемы весьма перспективно использование солнечной энергии в южных районах страны. Не останавливаясь подробно на принципиальных возможностях и экономической целесообразности использования энергии солнца для термообработки цементных бетонов, необходимо отметить, что в отличие от цементных бетонов полимербетоны требуют сухого прогрева, и в этом отношении использование энергии солнца наиболее предпочтительно.

Исследования в области использования энергии солнца для термообработки полимербетонных изделий еще недостаточно широко распространены. Однако испытания гелиокамеры для конвейерной термообработки полимербетонных изделий показали ее высокую эффективность и универсальность, а также хорошие физико-механические характеристики получаемых изделий.

Гелиокамера состоит из корпуса, оснащенного теплоизоляцией, двухслойного прозрачного покрытия, конвейера и электронагревателей. В течение солнечного дня температура в такой камере колеблется от 60 утром до 90 °С днем. Такая температура вполне достаточна для отверждения тонкостенных изделий за время движения формы внутри камеры.

Технико-экономическая эффективность применения полимербетонов в строительстве

Стоимость полимербетонов в основном определяется стоимостью полимерного связующего. По мере развития химической промышленности и увеличения производства мономеров и олигомеров их стоимость будет непрерывно уменьшаться. Улучшается и качество выпускаемых продуктов, что позволило разработать ряд новых видов полимербетонов на более дешевых фенолоформальдегидных, карбамидных и других смолах. Работы в этом направлении будут продолжаться и в дальнейшем. В то же время, судя по опыту ценообразования на мировом рынке, это снижение имеет определенные пределы и цены на смолы останутся в 10–20 раз выше цен на минеральные вяжущие. Как показала экономическая оценка, сравнение стоимости синтетических смол со стоимостью портландцемента или других вяжущих приводит к неправильным выводам. Так как в полимербетонах количество связующего составляет не более 10% по общей массе, а трудозатраты на изготовление примерно те же, что и при изготовлении цементных бетонов, более правильное представление дает отпускная стоимость конструкций, выполненных из тех и других материалов.

Расчеты показывают, что конструкции из тяжелых армополимербетонов дороже аналогичных железобетонных в 2–4 раза. В то же время более высокая прочность армополимербетонов позволяет значительно сократить материалоемкость. В некоторых случаях объем армополимербетонных конструкций можно уменьшить в 1,5–2 раза по сравнению с железобетонными. При этом отпадает необходимость в многодельной и дорогостоящей химической защите железобетонных конструкций. С учетом снижения материалоемкости и стоимости химической защиты исходная стоимость армополимербетонных конструкций приближается к стоимости железобетонных конструкций, а в некоторых случаях она может быть и ниже. Если учесть, что в условиях интенсивного воздействия агрессивных сред долговечность армополимербетонных конструкций в 3–5 раз выше железобетонных с химической защитой, то станет очевидна высокая их надежность и рентабельность.

Страницы: 1, 2, 3, 4, 5, 6


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.