рефераты скачать

МЕНЮ


Курсовая работа: Проектирование и исследование механизмов компрессора

2.3 Построение планов ускорений

Определяем ускорение точки а кривошипа 1, совершающего вращательное движение:

, , значит

;

м/с2.

Принимаем длину масштабного отрезка, изображающего ускорение точки А  и рассчитываем масштабный коэффициент плана ускорений

;

Принимаем .

Пересчитываем значение масштабного отрезка:

.

Ускорение точки В считается по формулам:

 ;

– нормальное ускорение точки В относительно полюса А;

 – тангенсальное ускорение точки В относительно полюса А;

 – нормальное ускорение точки В;

– тангенсальное ускорение точки В;

, =;

Решаем это уравнение графически.

Используя условие подобия одноименных фигур плана ускорений и плана механизма находим положение точки C на плане ускорений.

Ускорение точки D считается по формуле:

;

 – нормальное ускорение точки D относительно полюса С;

 – тангенсальное ускорение точки D относительно полюса С;

;

Решаем это уравнение графически.

Рассчитываем ускорения:

;

;

;

;

;

;

Рассчитываем угловые ускорения звеньев:

;

;

Полученные данные заносим в таблицу 2.2.

Таблица 2.2

Ускорения точек и угловые ускорения звеньев

Параметр Положения
0 2

b, мм

59 49

c, мм

61 68

d, мм

139 92

s2, мм

66 32

s4,мм

98 70
n2b ,мм 12 113
n3b, мм 59 39
n4d,мм 92 79
aB,м/с2 59 49
aC, м/с2 61 68
aD, м/с2 139 92
as2 ,м/с2 66 32
as4, м/с2 98 70

,м/с2

12 113

,м/с2

59 39

, м/с2

92 79

,рад/с2

24 226

,рад/с2

203,5 134,5

,рад/с2

164,3 141,1

3. Динамический анализ и синтез машинного агрегата

3.1 Динамическая модель машинного агрегата

Основным условием синтеза машинного агрегата является обеспечение заданной неравномерности движения , где - фактическое значение неравномерности,  - допускаемое значение коэффициента неравномерности. =0,07

Конструктивно эта задача решается с помощью установки маховика. В результате решения задачи синтеза определяется:

1-  необходимый момент инерции маховика;

2-  размеры маховика;

3-  место установки маховика.

Для упрощения решения задач синтеза механизм заменяется его расчетной динамической моделью (рис.3.1.). Эта модель представляет собой твердое тело, обладающее некоторым моментом инерции (– приведенный момент инерции), вращающееся вокруг неподвижной осипод действием пары сил с моментом  (– приведенный момент сил). Угловая координата динамической модели должна совпадать с угловой координатой одного из звеньев механизма (звено приведения).


Рис. 3.1. Динамическая модель машинного агрегата

3.2 Построение графика приведенного момента сил сопротивления

Схема механизма с приложенными к ней силами показана на рисунке 3.2.


Рис.3.2 Схема механизма с приложенными силами

На звенья механизма действуют следующие силы:

1.  Силы тяжести звеньев

2.  Момент сил сопротивления.

Приведенный момент сил сопротивления рассчитываем по формуле:

 - углы между направлением соответствующих сил и скоростью их точки приложения.

, т.к.

углы ,  определяются по планам скоростей.

Индикаторная диаграмма, показывающая давление газов в цилиндре изображена на рисунке 3.3.


Рис. 3.3 Индикаторная диаграмма

Исходные данные для расчета и значения приведенного момента сил сопротивления заносим в таблицу 3.1.


Таблица 3.1

Расчет приведенного момента сил сопротивления

Параметр Положения
0,12 1 2 3 4 5 5’ 6 7 8 9 10 11

VS2,

м/с

1,2 2,1 2,75 3,2 2,25 0,9 1,35 1,35 2,85 3,15 2,8 2 1,05

VS4,

м/с

0,15 2,15 3,9 4,6 3,5 1,2 0,2 0,85 2,5 3,65 3,85 3,05 1,65

VD,

м/с

0 3,05 5,5 6,2 4,55 1,5 0 1,1 3,3 4,9 5,15 4,2 2,45
P5, Н 6185 4330 3711 22266 24740 24740 24740 21648 10515 619 6185 6185 6185

,

град

80 50 45 45 40 20 75 90 110 130 145 170 150

,

град

30 10 15 20 25 25 55 140 150 160 165 170 170

,

град

0 180 180 180 180 0 0 180 180 180 180

Нм

0 504 -779 -5269 -4296 -1416 0 909 1324 -116 -1216 -991 -578

мм

0 10,1 15,6 105,4 85,9 28,3 0 18,2 26,5 2,3 24,3 19,8 11,6

Страницы: 1, 2, 3, 4, 5, 6


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.