рефераты скачать

МЕНЮ


Курсовая работа: Металлы побочной подгруппы I группы

В древнем Уре (около 2000 л. до н. э.) серебро называлось ку-баб-бар (ku-babbar) от ку (быть чистым) и баббар (белый). Серебряные предметы, относящиеся ко II тысячелетию до н. э., найдены и в других странах (Эгейский архипелаг, Троя). В рукописях тех времен встречается греческое название серебра - от слова (белый, блистающий, сверкающий). С древнейших времен серебро применялось в качестве монетного сплава (900 частей серебра и 100 частей меди). Европейские народы познакомились с серебром около 1000 г. до н. э. Еще в эллинистическом Египте, а вероятно, и раньше серебро часто называли луной и обозначали знаком луны (чаще - растущей после новолуния),в Ассирии серебро считалось «металлом Луны» и было таким же священным, как в Египте золото. Наряду с ним и с обычным лат. algentum существовали и тайные названия, например Sidia (id est Luna), terra fidelis, terra coelestis и т. д. Алхимики иногда считали серебро конечным продуктом трансмутации неблагородных металлов, осуществляемым с помощью "белого философского камня" (белого порошка), а иногда - промежуточным продуктом при получении искусственного золота.

Полагают, что все названия серебра, а именно англ. Silver (древнеангл. Seolfor), нем. Silber и схожие с ними готский Silubr, голландский zilver, шведский silfer, датский solf произошли от ассирийского Сарпу (sarpu), точнее Si-rа-pi-im (серафим), означающего "белый металл", "серебро". Что касается происхождения славянских названий сидабрас, сиребро (чешск, стрибро) и древнеславянского (древнерусского) сребро (сьребро, съребро, серебро), то большинство филологов связывает их с германским Silber, т. е. с ассирийским Сарпу. Возможно, однако, и другое сопоставление со словом "серп" (лунный) - по-древнеславянски "сьрп".С серебром связано происхождение некоторых общепринятых понятий и названий. Так, например, в древней Руси мерой стоимости различных предметов являлись бруски серебра. В случаях, когда тот или иной предмет торговли стоил меньше всего бруска, от бруска отрубали часть, соответствующую стоимости вещи. Эти отрубленные части назывались "рублями", от них и пошло название принятой в нашей стране денежной единицы - рубль.От серебра произошло название и одной из стран Южной Америки - Аргентины. Легенда, в которой исторические факты тесно переплетаются с поэтическим вымыслом, рассказывает, что в 1515 г. испанский правительственный лоцман де Солис открыл в Южной Америке устье большой реки, названной после Солиса его именем. В 1527 г. Себастиан Кабот, поднимаясь вверх по течению реки де Солис, был поражен количеством серебра, награбленного его матросами у населения. Это дало Каботу повод назвать устье реки Ла Платой - серебряной (по-испански "плата" - серебро, де плата - серебряный), от имени которой произошло впоследствии название и всей страны. После освобождения страны от испанских войск (1811-1826 гг.), чтобы не вспоминать испанцев, название страны латинизировали (серебро - по-латыни аргентум), оно и сохранилось до наших дней. [2]

Нахождение серебра в природе

Содержание серебра в земной коре составляет 1x10-6 вес.% по Ферсману и Виноградову. В метеоритах серебро содержится в количестве 3,3-10-4 %, в Солнечной системе на каждые 106 атомов кремния приходится 0,067 атомов серебра с массовым числом 107 и 0,063 атома серебра с массовым числом 109. Следы серебра — около 0,02 мг на 100 г сухого вещества - содержатся в организмах млекопитающих, в органах человека, а также в морской воде — от 0,3 до 10 мг/т. Серебро встречается в самородном состоянии и в виде редких минералов, входящих, как правило, в состав полиметаллических руд — сульфидов свинца, цинка, меди.

Наиболее важное значение имеет самородное серебро, аргентит (серебряный блеск, серебряная чернь), пираргирит и прустит. Самый крупный когда-либо найденный самородок серебра весил 13,5 т.

Главные месторождения полиметаллических руд находятся в Брокен-Хилле (Австралия), в районе рек Миссисипи и Миссури (США), в Мексике, Чили, Перу, Боливии, Канаде, Африке. В России месторождения этих руд сосредоточены на Северном Кавказе, в республиках Средней Азии, Западной и Восточной Сибири, на Дальнем Востоке. Самородное серебро встречается в Консберге (Норвегия). В России известны Змеиногорское месторождение (Алтай), также месторождения Нерчинского округа и Верхоянья.

Мировая выработка серебра в настоящее время составляет около 7 тыс. тонн.[7]


Физические и химические свойства серебра

Физические свойства серебра

Серебро проявляет большее сходство с палладием (за которым он следует в периодической системе), чем с рубидием (с которым он находится рядом в I группе периодической системы и в том же пятом периоде).

Расположение серебра в побочной подгруппе I группы периодической системы определяется электронной структурой атома, которая аналогична электронной структуре атома рубидия. Большое различие в химических свойствах серебра и рубидия определяется разной степенью заполненности электронами 4й-орбитали. Атом серебра отличается от атома палладия наличием одного электрона на 5й-орбитали.

По большинству физических и химических свойств серебро приближается к меди и золоту. В подгруппе меди серебро (средний элемент) обладает наиболее низкими температурами плавления и кипения и максимальным значением коэффициента расширения, максимальной тепло- и электропроводностью.

Физико-химические свойства серебра в значительной степени зависят от его чистоты.

Металлическое серебро в компактном полированном виде (бруски, трубки, проволока, пластинки, листы) представляет собой белый блестящий металл, обладающий большой отражательной способностью по отношению к инфракрасным и видимым лучами и более слабой - к ультрафиолетовым лучам. Серебро в виде тонких листочков (они кажутся синими или фиолетовыми в проходящем свете) обладает электрическими и оптическими свойствами, отличными от свойств металлического серебра в слитках.

Металлическое серебро обладает кубической гранецентрированной решеткой с плотностью 10,50 г/см3 при +20°C, температура плавления +960,5°C, температура кипения +2177°C (пары желтовато-синие); оно диамагнитно, является очень хорошим проводником тепла и электричества (удельное сопротивление при +20°C равно 1,59 мком/см). В числе физико-механических свойств следует отметить пластичность, относительную мягкость (твердость 2,5-3 балла по шкале Мооса), ковкость и тягучесть (легко протягивается и прокатывается), малую прочность.

При легировании устраняются основные недостатки серебра, такие, как мягкость, низкая механическая прочность и высокая реакционная способность по отношению к сере и сульфидам. [9]

Химические свойства серебра

Некоторые газы, например водород, кислород, окись и двуокись углерода, растворяются в серебре, причем растворимость их пропорциональна квадратному корню от давления. Растворимость кислорода в серебре максимальна при +400...450°C (когда 1 объем серебра поглощает до 5 объемов кислорода). Рекомендуется избегать охлаждения серебра, насыщенного кислородом, поскольку выделение этого газа из охлаждаемого серебра может сопровождаться взрывом. При поглощении кислорода или водорода серебро становится хрупким.

Азот и инертные газы с трудом растворяются в серебре при температуре выше -78°C. [9]

Как уже говорилось ранее, с химической точки зрения серебро достаточно инертно, оно не проявляет способности к ионизации и легко вытесняется из соединения более активными металлами или водородом.

Оксид серебра является амфотерным оксидом, так как серебро является металлом и проявляет ярко выраженные металлические свойства - следовательно, он не может быть кислотным. Щелочным металлом серебро тоже не является. Электроотрицательность серебра по шкале равна 1,9.

Под действием влаги и света галогены легко взаимодействуют с металлическим серебром образуя соответствующие галогениды.

Соляная и бромистоводородная кислоты в концентрированных растворах медленно реагируют с серебром:


2Ag + 4НСl = 2H[AgCl2] + Н2

2Ag + 4НВr = 2H[AgBr2] + Н2

Кислород взаимодействует с нагретым до 168° металлическим серебром при разных давлениях с образованием Ag2O. Озон при +225°С в присутствии влаги (или перекиси водорода) действует на металлическое серебро, образуя высшие окислы серебра.

Сера, реагируя с нагретым до +179°С с металлическим серебром, образует черный сульфид серебра Ag2S. Сероводород в присутствии кислорода воздуха и воды взаимодействует с металлическим серебром при комнатной температуре по уравнению:

2Ag + H2S +1/2O2 - Ag2S + H2O

Металлическое серебро растворяется в H2SO4 (60° Be) при нагревании, в разб. HN03 на холоду и в растворах цианидов щелочных металлов в присутствии воздуха (кислорода или другого окислителя):

медь серебро золото свойство

2Ag + 2H2SO4 = Ag2SO4 + SO2 + 2H2O

3Ag + 4HNO3 + 3AgNO3 + NO + 2H2O

2Ag + 4NaCN + H2O + l/2 O2 = 2Na[Ag(CN)2] + 2NaOH

Cелен, теллур, фосфор, мышьяк и углерод реагируют с металлическим серебром при нагревании с образованием Ag2Se, Ag2Te, Ag3P, Ag3As, Ag4C. Азот непосредственно не взаимодействует с серебром.

Органические кислоты и расплавленные щелочи пли соли щелочных металлов не реагируют с металлическим серебром. Хлорид натрия в концентрированных растворах и в присутствии кислорода воздуха медленно взаимодействует с серебром с образованием хлорида серебра.В солянокислом растворе серебро восстанавливает некоторые соли металлов, такие, как CuCl2, HgCL2, FeI2. VOC12.

Сеpебpо обладает склонностью к образованию комплексных соединений.

Многие неpаствоpимые в воде соединения сеpебpа (напpимеp: оксид сеpебpа(I) — Ag2O и хлоpид сеpебpа — AgCl), легко pаствоpяются в водном pаствоpе аммиака. Комплексные цианистые соединения сеpебpа пpименяются для гальванического сеpебpения, так как пpи электpолизе pаствоpов этих солей на повеpхности изделий осаждается плотный слой мелкокpисталлического сеpебpа. Все соединения сеpебpа легко восстанавливаются с выделением металлического сеpебpа. Если к аммиачному pаствоpу оксида сеpебpа(I), находящемуся в стеклянной посуде, пpибавить в качестве восстановителя немного глюкозы или фоpмалина, то металлическое сеpебpо выделяется в виде плотного блестящего зеpкального слоя на повеpхности стекла. Этим способом готовят зеркала, а также серебрят внутреннюю поверхность стекла в сосудах для уменьшения потери тепла лучеиспусканием.

Примеры:

Na3[Ag(S2O3)2]

[Ag(NH3)2]OH

[Ag(NH3)2]2SO4

K[Ag(CN)2]

Na[Аg(SCN)2]; Na2[Ag(SCN)3]; Na3[Аg(SСN)4]

(NН4)5[Аg(SСN)6]

Сs3Ba[Ag(NО2)6]·2Н2О

(NН4)9[Аg(S2O3)4Cl2] [1]


Соединения серебра

Химические соединения серебра — всевозможные химические соединения серебра с различной степенью окисления, и различными физико-химическими характеристиками. Соединения серебра имеют значительное экономическое, научное и медицинское значение. В настоящее время известно несколько десятков различных химических (органических и неорганических) соединений серебра.

В соответствии со своим положением в I группе периодической системы серебро в большинстве соединений проявляет степень окисления +1 (одновалентно). Однако есть и производные серебра со степенью окисления +2 и +3, например AgO, AgF2. Проявление серебром высших степеней окисления объясняется тем, что в реакциях атома серебра может участвовать не только единственный валентный s-электрон внешней оболочки, но также один или два d-электрона предыдущей оболочки (конфигурация 4d105s1). Рассмотрим соединения, в которых серебро является одновалентным.

Ag2O — оксид серебра (I) — вещество буро-черного цвета, может быть получено только косвенным путем. Осаждается при введении ионов ОH- в раствор, содержащий ионы Ag+:

2AgNO3+2КОН=Ag2O+2KNO3+H2O

Оксид серебра (I) уже при 300°С разлагается на кислород и серебро:

2Ag2O=4Ag+O2

В воде нерастворим, но растворим в водном растворе аммиака с образованием комплексной соли: Ag2O+4NH3+H2O=2[Ag(NH3)2]OH

Проявляет окислительные свойства, особенно по отношению к некоторым органическим веществам:


НСНО+2Ag2O->4Ag+СО2+Н2О

реакция «серебряного зеркала»

Из солей серебра следует отметить галогениды. Из галогенидов серебра в воде растворим фторид серебра AgF. Хлорид, бромид и иодид серебра отличаются очень слабой растворимостью в воде и разбавленных кислотах. Их получают действием соответствующих галогенидов натрия или калия на раствор нитрата серебра:

AgNO3+NaCl=AgCl+NaNO3

Образующиеся галогениды серебра выпадают в осадок в виде хлопьев (AgCl — белый, AgBr и AgI — желтоватые). Такие реакции имеют большое значение в аналитической химии: ионы серебра Ag+ служат очень чувствительными реагентами на галогенид-ионы. Наименее растворимая соль серебра — сульфид серебра Ag2S. Из растворимых солей наиболее распространен нитрат серебра AgNO3, его получают непосредственным растворением серебра в азотной кислоте.

Все соли серебра легко восстанавливаются до металла. Нитрат серебра и его растворы, попав на кожу, оставляют на ней черные пятна мелкораздробленного серебра; отсюда старинное название AgNO3 — ляпис. [1]

Применение серебра

Серебро ранее служило главным образом для выделки разменной монеты, домашней утвари и украшений. В настоящее время большой спрос на него предъявляют некоторые отрасли промышленности (электротехническая и др.). Его применяют также для изготовления частей заводской аппаратуры некоторых химических производств. В лабораториях серебряными тиглями пользуются для плавления щелочей, при высоких температурах действующих разъедающее почти на все другие материалы. Соединения Аg находят применение преимущественно в фотографической промышленности и медицине. Мировая выработка серебра составляла в 1800 г. 800 т, а в 1900 г. 5500 т. В настоящее время его ежегодно добывается около 10 тыс. т (без СССР). Приблизительно 2/3 всего серебра получено при комплексной переработке полиметаллических сернистых руд.

Серебро — элемент, известный еще с древних времен,— всегда играло большую роль в жизни человека. Высокая химическая устойчивость, ценные физические свойства и красивый внешний вид сделали серебро незаменимым материалом для изготовления разменной монеты, посуды и украшений. Сплавы серебра применяются в различных областях техники: в качестве катализаторов, для электрических контактов, как припои. Интересное применение находит получаемое восстановлением мелко раздробленное серебро в санитарной технике и медицине. Как показывает опыт, ион Аg• обладает исключительно сильно выраженными бактерицидными (убивающим бактерии) свойствами, Например, выдержанная некоторое время в серебряных сосудах вода может затем вне контакта с воздухом сохраняться без загнивания неограниченно долго, так как она оказывается достаточно стерилизованной уже той ничтожной концентрации иона Аg, которая в ней создается при соприкосновении с металлическим серебром. Это было известно еще в древности. Так, около 2500 лет тому назад персидский царь Кир пользовался серебряными сосудами для хранения питьевой воды во время своих военных походов.

Накопление ионов Аg• протекает тем быстрее, чем больше поверхность соприкосновения воды с металлом. Для максимального увеличения этой поверхности с наименьшей затратой металла целесообразно осаждать последний очень тонким слоем на зернах обычного песка и затем фильтровать воду сквозь слой такого посеребренного песка. Подобным образом могут быть созданы удобные походные фильтры для обеззараживания воды. С другой стороны, перевязки с применением полученной тем же путем «серебряной марли» или «серебряной ваты» (либо просто присыпки порошком коллоидного серебра) хорошо действуют при лечении некоторых кожных заболеваний, трудно заживающих язв и т. д. Покрытие поверхностных ран серебряными пластинками практиковалось уже в древнем Египте. [2]

«Серебряная вода» может служить для обеззараживании и консервирования некоторых пищевых продуктов. Следует отметить, что более быстрым и удобным способом ее получения является контакт воды не с металлическим Аg, а с хлористым серебром. Создающаяся в насыщенном растворе этой соли концентрация Аg• составляет около 1 мг/л. тогда как нижний предел бактерицидного действия серебра оценивается концентрацией порядка 10-6 мг/л. Следовательно, насыщенный раствор АgСl без потери его бактерицидности может быть разбавлен в 100 и более раз.

Очистку больших количеств воды на основе использования бактерицидного действия иона Ag• особенно удобно проводить электрохимическим путем. Для этого достаточно иметь небольшой источник постоянного тока и две серебряные пластинки в качестве электродов. Током силой в 10 мА (при напряжении около 1,5 в) можно осуществить стерилизацию 4000 л воды за час.

Летучесть серебра при высоких температурах используется в ракетной технике. Из показанной схемы сопла, его внутренняя графитовая обкладка в наиболее горячей зоне защищается от выгорания пластиной плотного вольфрама с внутренней полостью, которую заполняет пористый вольфрам, пропитанный серебром. Испарение последнего охлаждает вольфрам, что дает ему возможность противостоять действию стремительного потока газа, нагретого примерно до 3000 °С. [9]


Золото

Золото — элемент побочной подгруппы первой группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 79. Обозначается символом Au (лат. Aurum). Простое вещество золото (CAS-номер: 7440-57-5) — благородный металл жёлтого цвета.

История и происхождение названия

Золото — одно из первых металлов, с которым познакомилось человечество. Самородное золото, как и серебро, известно человечеству несколько тысячелетий; об этом свидетельствуют изделия, найденные в древних захоронениях, и примитивные горные выработки, сохранившиеся до наших дней. В древности основными центрами добычи благородных металлов были Верхний Египет, Нубия, Испания, Колхида (Кавказ); имеются сведения о добыче и в Центральной, в Южной Америке, в Азии (Индия, Алтай, Казахстан, Китай). Из россыпей металлы извлекали промывкой песка на шкурах животных с подстриженной шерстью (для улавливания крупинок золота), а также при помощи примитивных желобов, лотков и ковшей. Из руд металлы добывали нагреванием породы до растрескивания с последующими дроблением глыб в каменных ступах, истиранием жерновами и промывкой. Разделение по крупности проводили на ситах. В Древнем Египте был известен способ разделения сплавов золота и серебра кислотами, выделение золота и серебра из свинцового сплава купелированием, извлечение золота путем амальгамирования ртутью, или сбор частиц с помощью жировой поверхности (Древняя Греция). Купелирование осуществляли в глиняных тиглях, куда добавляли свинец, поваренную соль, олово и отруби.

В XI—VI веках до н. э. золото добывали в Испании в долинах рек Тахо, Дуэро, Миньо и Гуадьяро. В VI—IV веках до н. э. начались разработки коренных и россыпных месторождений золота в Трансильвании и Западных Карпатах. [2]

В России первым золотодобытчиком считается Ерофей Марков, памятник которому стоит в городе Берёзовский близ Екатеринбурга.

Поскольку золото было известно, вероятно, ещё до появления письменности, проследить историю его названия, скорее всего, невозможно. Известно, однако, что в славянских языках слово золото имело в древности общий корень со словом «жёлтый», первоначальный вариант слово записывают как zolto. Некоторые связывают происхождения слова «золото» со словом «солнце» (корень sol). Однако достаточно достоверных версий происхождения названия нет.

Слово gold в европейских языках связано с греческим богом Солнца Гелиосом. Латинское aurum означает «жёлтое» и родственно с «Авророй» (Aurora) — утренней зарёй.

Нахождение в природе

Золото - очень редкий металл. Его содержание в земной коре (кларк) составляет около 4 х 10-7 %, то есть в 1 км3 содержится 12 т золота. Это в несколько тысяч раз меньше, чем содержание таких металлов, как медь, цинк или свинец, поэтому при поисках и разведке месторождений золота важно понять условия его концентрирования и рассеяния в природе. Проведенные исследования показали, что золото присутствует в разных горных породах: как в магматических (гранитах и базальтах), так и в осадочных (океанических илах). Ф. Фриденбург в 1953 году рассчитал, что в слое земной коры до глубины 3000 м содержится 4470 млн т золота. Еще большие запасы хранятся в воде. Содержание золота в пресной воде составляет 1 х 10-9 %, а в морской может достигать 15-16 мг/т (у берегов США, в водах Карибского моря). Таким образом, 1 т воды содержит около 0,02 мг золота и общая масса морского золота составляет 25-27 млн т. [6]

Самородное золото часто представляет собой его природный сплав с серебром, называемый электрумом. Присутствие в самородном золоте примесей серебра, меди и некоторых других металлов определяет его пробу - отношение содержания золота к сумме содержаний золота и серебра. Наиболее широко в природе распространено самородное золото с пробой выше 650.

Самородное золото - главная форма нахождения золота в природе. Оно концентрируется в гидротермальных месторождениях образуя золотые руды, неравномерно распределяясь в трещиноватом жильном кварце и в сульфидах - пирите, арсенопирите, пирротине и др. В существенно сульфидных рудах самородное золото тонкодисперсное. При окислении руд на земной поверхности мелкое самородное золото частично растворяется и переотлагается; в ряде случаев оно обогащает верхние части рудных тел. Процессы их разрушения приводят к освобождению частиц самородного золота и их накоплению в россыпях; перемещаясь водными потоками вместе с другим кластическим материалом, частицы окатываются, округляются, деформируются, частично перекристаллизовываются; в результате электрохимической коррозии на них образуется тонкая оболочка высокопробного золота, что приводит к общему повышению пробы самородного золота в россыпях.

В России самородками богаты восточные (Урал, бассейн р. Лена) и др. районы (самый крупный самородок, найденный на Урале, весит 36,2 кг). Ценные самородки сохраняются государствами как раритеты.

Помимо серебристого золота (электрума) в природе было найдено также медистое, висмутистое, платинистое, палладистое и иридистое самородное золото. Часть золота с примесями Pt, Pd и Ir попадает на поверхность Земли из космоса в составе метеоритов. Количество таких космических золотых осадков составляет около 18 кг в год. [13]


Физические и химические свойства

Физические свойства золота

Золото давно является объектом научных исследований и относится к числу металлов, чьи свойства изучены достаточно глубоко. Атомный номер золота 79, атомная масса 197.967, атомный объем 10.2см /моль. Природное золото моноизотопно и в нормальных условиях инертно по отношению к большинству органических и неорганических веществ. Золото имеет гранецентрированную кубическую решетку и не претерпевает аллотропических превращений. Постоянная решетки а составляет 4.07855 А при 25 С, что соответствует значению 4.0724 А при 20 С.

Большие расхождения существуют в результате измерения температуры плавления золота – от 1062.7 до 1067.4 С. Как правило, температурой плавления золота считают 1063 С. Теплота сублимации золота при 25 С равна 87.94 ккал. Поверхностное натяжение расплавленного золота составляет 1.134 Дж/м. Теплопроводность золота l при 20 С составляет 0.743 кал и мало меняется с повышением температуры. При низких температурах наблюдается максимум теплопроводности при 10 К. Температурный коэффициент электросопротивления при 0 – 100 С равен 0.004 С. Облучение, наклеп и закалка золота приводят в результате образования дефектов решетки к небольшим изменениям параметра решетки и объема металла. Однако эти изменения очень не значительны, линейные размеры изменяются лишь на несколько сотых процентов. В процессе отжига происходит термический возврат свойств, изменение которых было вызвано дефектами решетки. Для чистого золота характерны низкое значение предела прочности s - порядка 13 – 13.3 кгс/мм – и высокое значение относительного удлинения – порядка 50% - в отожженном состоянии. Предел текучести s также очень низок, он равен 0.35 кгс/мм. Упрочение в процессе пластической деформации весьма не значительно вследствие склонности золота к рекристаллизации в процессе деформирования.

Химические свойства золота

Золото — самый инертный металл, стоящий в ряду напряжений правее всех других металлов, при нормальных условиях оно не реагирует с большинством кислот и не образует оксидов, благодаря чему было отнесено к благородным металлам, в отличие от металлов обычных, легко разрушающихся под действием окружающей среды. Затем была открыта способность царской водки растворять золото, что поколебало уверенность в его инертности.

Из чистых кислот золото растворяется только в горячей концентрированной селеновой кислоте:

2Au + 6H2SeO4 = Au2(SeO4)3 + 3H2SeO3 + 3H2O

Золото сравнительно легко реагирует с кислородом и другими окислителями при участии комплексобразователей. Так, в водных растворах цианидов при доступе кислорода золото растворяется, образуя цианоаураты:

4Au + 8CN− + 2H2O + O2 → 4[Au(CN)2]− + 4 OH−

В случае реакции с хлором возможность комплексообразования также значительно облегчает ход реакции: если с сухим хлором золото реагирует при ~200 °С с образованием хлорида золота(III), то в водном растворе (царская водка) золото растворяется с образованием хлораурат-иона уже при комнатной температуре:

2Au + 3Cl2 + 2Cl− → 2[AuCl4]−

Золото легко реагирует с жидким бромом и его растворами в воде и органических растворителях, давая трибромид AuBr3.

Со фтором золото реагирует в интервале температур 300−400°C, при более низких реакция не идёт, а при более высоких фториды золота разлагаются.

Золото также растворяется во ртути, фактически образуя легкоплавкий сплав (амальгаму).

В концентрированной серной кислоте золото растворяется в присутствии окислителей: иодной кислоты, азотной кислоты, диоксида марганца. В водных растворах цианидов при доступе кислорода золото растворяется с образованием очень прочных дицианоауратов:

4Au + 8NaCN + 2H2O + O2 → 4Na[Au(CN)2] + 4NaOH

Эта реакция лежит в основе важного промышленного способа извлечения золота из руд.

Но самыми необычными являются свойства мелкораздробленного золота. При восстановлении золота из сильно разбавленных растворов оно не выпадает в осадок, а образует интенсивно окрашенные коллоидные растворы – гидрозоли, которые могут быть пурпурно-красными, синими, фиолетовыми, коричневыми и даже черными. Так, при добавлении к 0,0075%-ному раствору H[AuCl4] восстановителя (например, 0,005%-ного раствора солянокислого гидразина) образуется прозрачный голубой золь золота, а если к 0,0025%-ному раствору H[AuCl4] добавить 0,005%-ный раствор карбоната калия, а затем по каплям при нагревании добавить раствор танина, то образуется красный прозрачный золь. Таким образом, в зависимости от степени дисперсности окраска золота меняется от голубой (грубодисперсный золь) до красной (тонкодисперсный золь). При размере частиц золя 40 нм максимум его оптического поглощения приходится на 510–520 нм (раствор красный), а при увеличении размера частиц до 86 нм максимум сдвигается до 620–630 нм (раствор голубой). Реакция восстановления с образованием коллоидных частиц используется в аналитической химии для обнаружения малых количеств золота. [4]

Соединения золота

Галоидные соединения

Наиболее часто встречается на практике и служит для получения многих других соединений хлорное золото AuClЗ. Оно получается при нагревании Au в струе хлора при 300°, или же при растворении в царской водке. В последнем случае при выпаривании раствора досуха, для удаления кислот, происходит легкое разложение AuCl 3 с образованием AuCl, которое, будучи нерастворимо в воде, легко отделяется от AuClЗ. Хлорное золото растворимо в спирте, эфире и воде, довольно непрочно; при нагревании около 150° выделяет Cl и образует AuCl, а при более сильном совсем разлагается на Cl и Au; то же самое происходит под влиянием света. Из водного раствора множество веществ выделяют золото в металлическом виде; в этом отношении наиболее употребительны: SO2, FeSO4 и щавелевая кислота. Например с FeSO4 реакция идет так:

2АuСl 3 + 6FeSО 4 = 2Аu + Fe2Cl6 + 2Fe2(SO4) З.

AuCl3 соединяется с НСl, образуя AuCl 3 HCl (легкая разлагаемость и способность соединяться с НСl делают почти невозможным получение AuCl3 в совершенно чистом виде). [5]

Кислородные соединения золота

Из соединений золота с кислородом достоверно известны два: закись золота Au2O и окись Au2O3, хотя указывают на существование еще Аu2O2, Аu2O4, Аu2O5. Закись Au2O получается при действии КНО на AuCl на холоде или при кипячении AuCl 3 с уксуснокислым кали, лимонной кислотой, азотнокислой закисью ртути и пр., например:


2AuCl3 + 2Hg2(NO3)2 + Н 2 О = Au 2O + 3HgCl2 + 2HNO З + Hg(NO3)2.

Au2O в кислотах не растворяется, при нагревании выделяет кислород. Из солей, отвечающих закиси золота, наиболее прочны двойные, например сернистокислые соли щелочных металлов, AuNa 3(SO3)2 + 1/2 Н 2 О и пр. Особенной известностью пользуется двойная серноватисто-натровая соль Na 3Au(S2O3).2H2 O, так называемая соль Фодро и Желиса. Она образуется при действии серноватисто-натровой соли на AuCl .В воде она хорошо растворима и от прибавления спирта к раствору выделяется в виде хорошо образованных кристаллов. Своим постоянством она резко отличается от других солей золота. Щавелевая кислота, SO2 и FeSO4 не выделяют из нее металлическое золото, НCl, Н2SО4 не дают осадка серы, как у других серноватистых солей, HNO3 разрушает ее с выделением золота. Употребляется в медицине и фотографии. [5]

Цианистые соединения

Из других соединений золота наиболее интересны цианистые. Золото растворяется в KCN, в присутствии кислорода воздуха; при этом образуется двойная соль AuCNKCN, лучше всего она приготовляется, действуя KCN на гремучее золото или на Au2O3; обладает сравнительной прочностью, растворима в воде, из которой кристаллизуется в безводном состоянии (для растворения 1 части соли требуется около 7 час. воды при обыкновенной температуре). FeSO4 на нее не действует; SO 2 и щавелевая кислота не выделяют из нее золото, а осаждают AuCN. Бром и йод прямо присоединяются, образуя KCNAuCNJ 2 + Н 2 О и AuCNKCN Br 2 + 3Н 2 О. Тоже известно и для хлора. AuCNKCN употребляется на практике в большом количестве для золочения гальваническим путем. При выпаривании с HNO 3 или НCl это соединение разлагается с выделением AuCN - кристаллического порошка, нерастворимого в воде, HNO3, Н2SО4 и легко растворяющегося в цианистых металлах, с которыми образует двойные соли. При действии KCN на раствор AuCl 3, по возможности нейтральный, получается AuCN 3 KCN в виде кристаллов, растворимых в теплой воде и спирте. При разложении кислотами из нее получают кислоту AuCN 3HCN. [5]

Применение золота

Золото в медицине

Первые попытки применять золото в медицинских целях относятся еще ко временам алхимии, но они были немногим успешнее поисков философского камня.

Более эффективным медицинским средством оказался тиосульфат золота и натрия AuNaS2O3, который успешно применяется для лечения трудноизлечимого кожного заболевания – эритематозной волчанки. В медицинской практике стали применять и органические соединения золота, прежде всего кризолган и трифал.

Кризолган одно время широко применяли в Европе для борьбы с туберкулезом, а трифал, менее токсичный и более эффективный, чем тиосульфат золота и натрия, – как лекарство от эритематозной волчанки. В Советском Союзе был синтезирован высокоактивный препарат – кризанол (Au–S–СН2–СНОН–CH2SO3)2Ca для лечения волчанки, туберкулеза, проказы. [2]

После открытия радиоактивных изотопов золота его роль в медицине заметно возросла. Коллоидные частицы изотопов используют для лечения злокачественных опухолей. Эти частицы физиологически инертны, и потому их не обязательно как можно скорее выводить из организма. Введенные в отдельные области опухоли, они облучают только пораженные места. При помощи радиоактивного золота удается излечивать некоторые формы рака. Создан специальный «радиоактивный пистолет», в обойме которого 15 стерженьков из радиоактивного золота с периодом полураспада в 2,7 суток. Практика показала, что лечение «радиоактивными иголками» дает возможность ликвидировать поверхностно расположенную опухоль молочной железы уже на 25-й день.

Золотой катализ

Радиоактивное золото нашло применение не только в медицине.

Особенно интересны перспективы использования каталитических свойств золота в двигателях сверхскоростных самолетов. Известно, что выше 80 км в атмосфере содержится довольно много атомарного кислорода. Объединение отдельных атомов кислорода в молекулу O2 сопровождается выделением большого количества тепла. Золото каталитически ускоряет этот процесс. [2]

Золото в производстве волокна

Нити искусственного и синтетического волокна получают в устройствах, называемых фильерами. Материал фильер должен быть устойчивым к агрессивной среде прядильного раствора и достаточно прочным. В производстве нитрона применяют фильеры из платины, в которую, добавлено золото. Добавкой золота достигаются две цели: фильеры становятся дешевле (ибо платина дороже золота) и прочнее. И тот и другой металл в чистом виде мягкие, однако в сплаве они представляют собой материал не только повышенной прочности, но даже пружинящий. [2]


Заключение

В своей работе я рассказала о свойствах, применении, некоторых интересных фактах меди, серебра и золота. Видно, что все они имеют большое значение и будут и дальше использоваться человеком в различных сферах. Важное место занимает их способность длительное время сохранять неизменными свой внешний вид, форму, массу, что на языке химии определяется как высокая химическая, термическая, противокоррозионная и износостойкость. Сопоставив обе подгруппы I группы, можно наметить лишь немногие черты сходства. В частности, все металлы I группы отличаются высокой электропроводностью и образуют соединения, в которых они одновалентны. Однако Li и его аналоги только одновалентны, между тем как элементы подгруппы меди способны проявлять (а в случаях Cu и Au даже предпочтительно проявляют) более высокую валентность. В этом отношении несколько ближе других элементов подгруппы меди стоит к щелочным металлам серебро.


Список литературы

1) Реми Г. Курс неорганической химии (том 1), М., Химия 1967 г.

2) И. В. Петрянов-Соколов Популярная Библиотека химических элементов (книга 2-я) М., Наука 1977 г

3) Степин Б.Д., Аликберова Л.Ю. Книга по химии для домашнего чтения. М., Химия, 1994

4) Соболевский В. Благородные металлы. Золото. М., Знание, 1970

5) Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

6) Максимов М.М. Очерк о золоте. М., Недра, 1977

7) Максимов М.М Очерк о серебре М., Недра, 1981

8) Максимов, М.М., Горнунг, М.Б. Очерк о первой меди М., Недра 1976

9) Некрасов Б.В. Основы общей химии (том 2), М., Химия, 1973

10) Ю.Н.Кукушкин Химия вокруг нас, М., Высшая школа, 1992

11) Л.Ф.Попова. Медь. М., “Просвещение”, 1989

12) И.В.Пятницкий, В.В.Сухан Аналитическая химия серебра, М., Наука 1974

13) http://wiki.web.ru/


Страницы: 1, 2


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.