рефераты скачать

МЕНЮ


Курсовая работа: Екологічна паспортизація, водопостачання та водовідведення, утилізація та рекуперація відходів м’ясопереробного підприємства

- константа швидкості розчинення кисню при практичних розрахунках приймає такі значення:

водосховища та слабопроточні водойми 0,05 – 0,15
ріки зі швидкістю течії до 0,5 м/с 0,2 – 0,25
річки в з великою швидкістю течії 0,3 – 0,5
малі річки 0,5 – 0,8

- час протоку стічних вод до контрольного створу визначається за формулою:

де - відстань між місцем випуску стічної води і створом.

Для водоймища заданого типу водокористування гранично допустиме значення БСК води у створі - = 3 мг/л, =0,1 (при t=20°C), =0,4 (бо >0,5 м/с). Максимально допустиме значення БСК20 стічних вод, які спускаються у водоймище

Необхідна ступінь очищення стічних вод по БСК визначається за формулою:

2.2.2 Основні методи очищення СВ

До методів локального очищення жиромістких стічних вод відносяться: механічні, хімічні, фізико-хімічні, електрохімічні, електрофізичні методи.

До складу споруд механічного очищення входять: решітки, пісколовки, жироловки і відстійники.

Механічний метод очищення заснований на відстоюванні стічних вод. Відстоювання є найпростішим методом виділення грубодисперсних домішок. Цим методом виділяються як спливаючі, так і осідаючі домішки.

Жироловка має форму подовжньої камери з двома розділовими перегородками. Повітря проводиться в центральну частину знизу через систему перфорованих труб. Повітря викликає емульгування жирових речовин, які спливають з піною, що утворюється на поверхні рідини. Разом з жиром віддаляється частина завислих речовин. Піна переливається в бічні секції - заспокійливі камери, що виконують роль відстійників. В центральній частині камер завислі речовини осідають і потім видаляються із знежиреними стічними водами. Виділені жирові речовини скуплюються на поверхні і зливаються через перелив в збірний колодязь для жиру.

Застосування тільки механічних способів очищення не є достатньо ефективним стосовно висококонцентрованих жиромістких стічних вод. Використання їх як попередній етап перед фізико-хімічними, електрохімічними або електрофізичними способами очищення СВ є доцільним.

Одним з методів більш глибокого очищення стічних вод від забруднень є реагентная обробка стічних вод коагулянтами з подальшим відстоюванням. Ефективність видалення жиру при цьому збільшується до 90%. В якості коагулянту рекомендується використовувати сірчанокислий алюміній, сірчанокисле і хлорне залізо. Як присадку застосовують вапно.

Задовільні результати досягаються при хлоруванні стічних вод. Хлорування сприяє відділенню жирів і коагуляції дрібних частинок суспензії. Доза хлору 140 мг/л підвищує ефект видалення зважених речовин до 94%. Об'єм осаду, що утворюється у відстійниках складає 6-12% від витрати стічних вод. Для процесу відстоювання необхідно багато часу - 2-3 години. Недоліком даного методу очищення є: значні експлуатаційні витрати, великі витрати реагентів, збільшення капітальних витрат на будівництво очисних споруд, дорогі і дефіцитні реагенти, складність дозування реагентів, утворення великої кількості осаду з високою вогкістю, труднощі зневоднення осаду.

Останнім часом все більш широке розповсюдження отримали фізико-хімічні методи очищення, такі як екстракція, сорбція, флотація і інші.

Фізико-хімічні методи очищення, на відміну від біологічних можуть забезпечувати стійку роботу споруд при низькій температурі рідини, зміні гідравлічних і органічних навантажень, а також рН. Такі методи вимагають значно меншу тривалість обробки стічної рідини. Запуск цих споруд можливий безпосередньо після їхнього монтажу або перерв в роботі, вони швидко відновлюють необхідні параметри процесів очищення стічних вод і обробки осадів.

Метод мембранного очищення стічних вод заснований на здатності мембран затримувати забруднення, що містяться в стічних водах, за рахунок осматичного тиску.

Найбільш повно вивчений флотаційний спосіб очищення стічних вод, що містять жир, масло, нафту, нафтопродукти.

Суть виробничих флотаційних процесів полягає в тому, що штучно створений в рідкому середовищі висхідний потік газових пухирців захоплює і відносить з собою до поверхні рідини частинки жиру, суспензії, утворюючи шар піни. Піна видаляється різними пристроями з поверхні рідини на подальшу обробку.

Залежно від способу насичення стічної рідини розрізняють наступні методи флотації: пневматичну, напірну, електрофлотацію.

Відомий метод пневматичної флотації, яку здійснюють способом введення під тиском повітря в рідину і дисперсії його на пористих матеріалах. Різновидом є пінна сепарація, відмінна від інших видів флотації тим, що вода, яка очищується, подається у флотатор на пінний шар сформований в результаті бомбардування повітряним потоком рідини. Тобто рідина, що очищується, рухається назустріч потоку повітря, яке, створюючи пінний шар, забезпечує необхідну тривалість перебування частинок забруднень у піні. Потрапляючи в пінний шар, частинки забруднень закріплюються не тільки на поверхні пухирців повітря, але і на поверхні гідрофобних частинок, які раніше закріпилися на повітряних пухирцях.

В результаті створюється розгалужена поверхня піни, яка дозволяє скоротити тривалість флотації. В машинах пінної сепарації в якості аератору використовують спеціальні перфоровані гумові трубки, що збираються в касети.

Проведені дослідження показали, що цей метод дає ефект очищення від жирів 90-95%, від завислих речових 90-96%.

Метод напірної флотації полягає в насиченні стічної води газом (повітрям) під тиском, з подальшим зниженням тиску до атмосферного. При цьому відбувається інтенсивна десорбція газу і виділення великої кількості найдрібніших пухирців. Пухирці з прилиплими до них частинками жиру і суспензії спливають, що дозволяє значно прискорити процес виділення жирових речовин із стічних вод.

Відомий метод електрокоагуляції для очищення промислових стічних вод, заснованих на електролізі з використанням металевих (сталевих або алюмінієвих) анодів, що піддаються електролітичному розчиненню. В наслідок розчинення анодів вода збагачується відповідними іонами, що сприяє утворенню гідроокису алюмінію або заліза. Пластівці гідроокису металу з сорбованими забрудненнями, стикаються з пухирцями газу, з'єднуються з ними і спливають на поверхню рідини. Деякі частинки забруднень, що мають подібну до пластівців структуру, можуть самостійно коагулювати один з одним тим самим збільшуючи ефект гетеро коагуляції всієї системи.

Для відділення пластівців коагуляції з сорбованими забрудненнями застосовують подальше відставання або флотацію.

Комбінований метод, що включає електрокоагуляцію і електрофлотацію (електрофлотокоагуляцію) відрізняється високим відсотком виділення зі стічної води жирів і інших забруднень, більш економічний з точки зору витрат електроенергії і металевих електродів в порівнянні з електрокоагуляцією.

При використанні електрофлотокоагуляційної установки зникає необхідність введення реагентів в очищувачу рідину. Піна, яка утворюється при електрокоагуляції має високу стійкість. При відстоюванні вона руйнується через 24 години.

На підприємствах м'ясної промисловості застосовують біологічне очищення стічних вод. Встановлено, що на очисних спорудах, що включають решітки, пісковловлювачі, освітлювачі, аеротенки з механічною аерацією, повторні вертикальні відстійники, контактні резервуари може бути забезпечено зниження БПКповн до 20 мг/л, зважених речовин до 20 мг/л.

Останніми роками застосовується схема з використанням двоступеневих аеротенків з протилежним рухом активного мула. Також використовують біофільтри, які представляють собою очисні споруди у вигляді круглих або прямокутних резервуарів, заповнених фільтруючим матеріалом (завантаженням). В якості завантаження застосовують щебінь, гравій, керамзит, пластмасу, азбестоцемент і інші матеріали. На поверхні матеріалу завантаження наростає біологічна плівка, що представляє собою асоціацію мікроорганізмів, найпростіших і більш високоорганізованих тварин.

Особливостями процесу очищення в біофільтрах є контакт з біологічною плівкою, яка вільно протікає через завантаження стічної води, і дифузія забруднень із стічної води в біоплівку. Також до перспективних споруд відноситься біотенк. Він представляє собою біофільтр, занурений в аеротенк. Біологічне очищення в цій споруді здійснюється як за допомогою біоплівки, закріпленої в біофільтрі, так і за допомогою активного мулу, що знаходиться в аеротенку. Завантаження біофільтра представляє собою блоки з полімерних жорстких або гнучких матеріалів. Блоки в аеротенку встановлюють так, щоб можна було забезпечити ефективну циркуляцію мулової суміші між блоками і під блоками.

2.2.3 Розрахунок електрофлотаційної установки

Вихідні дані: витрата стічних вод, що подаються на ЕКФ - очистку складає 5,14 м3/ч. Ухвалений один ЕКФ - апарат, продуктивністю 5,14м3/ч. Тривалість обробки стічних вод, відповідно 15 хв, з них 5 хв або 0,08 год - в камері електрокоагуляції, 10 хв або 0,17 год – в камері електрофлотації. Густина струму в електрокоагуляторі іф = 60А/м2, в електрофлотаторі iф =80А/м2. Напруга постійного струму 6В. Кількість електрики на обробку води Ке=100 Ач/м2. між електродний простір в камері електрокоагуляції 20 мм.

Об'єм ЕКФ - установки визначається за формулою:

W=Q/t

Де t - тривалість обробки води, год.

W=5.14·0.25=1.285м3

Об'єм камери електрокоагуляції рівний:

Wк=5,14·0,08=0,41м3

Об'єм камери електрофлотації рівний:

Wф=5,14·0,17=0,87м3

Висота установки визначається за формулою:

Н=h1+h2+h3

Де h1 - висота шару рідини, враховуючи від нижньої кромки електродного блоку до шару піни, м. h1=0,8м;

h2 - висота шару піни, h2=0,2м;

h3 - висота борту установки, м. h3=0,3м;

Н=0.8+0.2+0.3=1.3м

Площа дзеркала води в кожній камері визначається за формулою:

F=W/h1, де

W - об'єм камери, м3;

h1 - висота шару рідини, м.

Fк=0,41/0,8=0,51м2

Fф=0.87/0.8=1.09м2

Ширина установки ухвалена 0,9 м. Тоді довжина кожної камери визначається:

L=F/В, де

L - довжина камери, м;

F - площа дзеркала води, м;

В - ширина установки, м.

Lк=0,51/0,9=0,57м

Lф=1,09/0,9=1,21м

Загальна довжина установки складає:

L=Lк+LФ+L1


Де L - загальна довжина установки, м;

Lк - довжина камери електрокоагуляції, м;

LФ - довжина камери електрофлотації, м;

L1 - довжина розподільної і збірної камер, м.

L=0.57+1.21+0.3=2.08 м

Сила струму в камері електрокоагуляції визначається за формулою:

Jк=KеQ, де

Ке - кількість електрики, Ач/м3;

Q - витрата стічних вод, м3/ч.

Jк=100·5,14=514 А

Кількість електродів в камері електрокоагуляції визначається за формулою:

nк=(В-2а+С)/(В1+С), де

В - ширина установки, м;

а - відстань від стіни камери до крайнього електрода, м. а=0,04 м;

С- міжелектродний простір, м;

В1 - товщина електродів, м. В1=0,005м.

nк = (0.9-2•0.04+0.02)/(0.005+0.02)=34 шт

Активна площа одного електрода в камері електрокоагуляції обчислюється за формулою:

f1=2•l1•h1, де

l1 - довжина електродів, м. l1=Lк-0,1=0,57-0,1=0,47 м.

h1 - висота електрода, м.

f1=2•0.47•0.8=0.75м

Активна площа всіх анодів (катодів) в камері електрокоагуляції складе:

åfa=åfк=0,75·34/2=12,75м2

Витрата матеріалу електродів визначається за формулою:

q=KвАJк/Q, де

q - витрата матеріалу електродів, г/м3;

Kв - коефіцієнт виходу по струму, Кв=0,4;

А - еквівалент електрохімії заліза, г/Ач А=0,606 г/Ач;

Q - витрата стічних вод, м3/ч

q=0.4•0.606•514/5.14=24.24г/м3

Сила струму в камері електрофлотації рівна:

Jф=jф•fa2, де

Jф - сила струму в камері електрофлотації, А;

jф - густина струму в камері електрофлотації, А/м2;

fа2 - активна площа горизонтальних електродів в камері електрофлотації, м2

fа2=fк2=(Lф-0,1)•(В-0,1), де

Lф - довжина камери електрофлотації, м;

В - ширина установки, м.

fа2=fк=(1,21-0,1)•(0,9-0,1)=0,89 м2

Jф=80•0,89=71,2 А

Вага блоку електродів в камері електрокоагуляції визначається за формулою:

Мк=g1•f1•nк•В1, де

g1 - густина матеріалу електродів, т/м3 g1=7,86т/м3;

f1 - активна площа одного електрода, м2;

nк - кількість електродів, шт;

В1 - товщина електродів, м.

Мк=7,86•0,75•34•0,005=1,002т

Вага електродів в камері електрофлотації визначається за формулою:

Мф=g2/•fa2•В2+g2•fк2•В3

Мф - загальна вага електродів в камері електрофлотації, т;

g2/ - питома вага заліза, т/м3 g2/=7,86 т/м3;

В2 - товщина катодної сітки, м. В2=0,001м;

g2 - питома вага графіту, т/м3 g2=1,5т/м3;

В3 - товщина анода, м. В3=0,04 м.

МФ=7,86•0,89•0,001+1,5•0,89•0,04=0,0604т=60,4кг

Тривалість роботи електродної системи в камері електрокоагуляції визначається за формулою:

Т=K•Mк/Q•q, де

Т - тривалість роботи електродної системи, сут;

K - коефіцієнт використання електродів, К=0,8;

Mк - маса електродної системи, г;

Q - витрата стічних вод, м3/сут;

q - витрата матеріалу електродів, г/м3

Т=0.8•1002000/41.12•24.24=804.21сут=36,5мес

Загальна витрата електроенергії складає:

Wэ=åJ•U/1000•Q•h, де

Wэ - витрата електроенергії, кВтч/м3;

åJ - сумарна кількість сили струму в установці, А;

U - напруга постійного струму, У;

Q - витрата стічних вод, м3/ч;

h - коефіцієнт корисної дії h=0,7

Wэ=(514+71,2)•6/100•5,14•0,7=0,98кВтч/м3

Витрата електроенергії за добу складе:

Wэ сут=0,98•41,12=40,3 кВт/доб

Витрата електроенергії за рік складе:

Wэ год=40.3•260=10478 кВт/рік

Кількість водню, виділеного в процесі очищення, визначається за формулою:

Z=Ав•åJ/Q, де

Z - кількість водню, виділеного в процесі очищення, г/Ач;

åJ - сумарна сила струму, А;

Q - витрата стічних вод, м3/ч;

Ав - еквівалент електрохімії водню, г/Ач

Z=0.037664•585.2/5.14=4.29гН2/м3

Об'єм піни, що виділилася в процесі очищення відповідно до балансу забруднень, складає 1,2336 м3/сут або 0,1542 м3/ч, об'єм пінного продукту після гасіння складає 0,5757 м3/сут або 0,072 м3/ч.

На підставі розрахунків запропоновано два ЕКФ- апарати (1 робочий і 1 резервний). Об'єм апарату складає 1,285 м3, довжина – 2,08 м., ширина – 0,9 м., робоча глибина – 0,8 м. Напруга постійного струму – 6В, сила струму 585,2А, тривалість роботи електродної системи в камері електрокоагуляції 36,5 місяців, річна витрата електроенергії 10478 кВт.

2.3 Утилізація і рекуперація відходів м’ясопереробної промисловості

Високі концентрації забруднення промислових стоків м’ясної промисловості обумовлюють утворення при їх переробці значних кількостей твердих відходів (осадів). Склад та властивості, які визначають направлення їх утилізації, специфічні для кожного ступеня очищення стоків.

Загальною характерною особливістю є вміст в них жиру, білку, мікрофлори ( у тому числі патогенної). Осади здатні швидко загнивати з утворенням неприємних запахів. Вміст в осадах жиру забезпечує утворення щільних відкладень на стінах труб та резервуарів.

За своїм хімічних складом осади м’ясопереробної промисловості відносяться до відходів, які можуть бути в подальшому утилізовані.

За рахунок зараженості відходів мікрофлорою, великої кількості вологи, здатності до гниття їх необхідно оброблювати і зневоднювати.

Важливою і в значній мірі невирішеною проблемою для м’ясної промисловості є обробка осадів з відстійників, в яких утворюється два види відходів – жиромаса, що концентрується на поверхні та донні осади.

Середній об’єм утвореного донного осаду (при ефективності очищення 40%) складає 0,5 кг сухої речовини з 1 м3 стоку. Великі кількості і вологість отриманих осадів зумовлює складність схем їх обробки.

Серед небагатьох діючих схем в м’ясній промисловості можна виділити три: механічне зневоднення в освітлювачах, підсушування на мулових площах, зневоднення в центрифугах.

Склад отриманого осаду: волога - 48-62 %, жир - 35 %, мінеральні речовини - 38-45 % [5, 13, 22].

Можлива утилізація отриманого осаду в якості добрива або сировини для витопки жиру з метою приготування домішок до комбікормів. Ці способи потребують наступного доопрацювання для забезпечення ефективного знезараження і мінералізації ( для добрив) або видалення жиру і мінеральних домішок ( для кормів).

Великого розповсюдження набули методи зневоднення донних осадів на мулових площах. Спосіб реалізується перекачуванням осаду на карти – площі.

Спосіб стає економічно не вигідним, якщо видалити площі більше 10 км. Тоді виникає необхідність розведення осаду водою для зручності його перекачування, а це значно знижує виробничі потужності площ. Кінцевий вміст вологи складає близько 75-80 %.

Технологічна схема процесу витопки жиру наступна. Жиромаса подається на вакуум-котел, в якому протягом 7-8 годин піддається тепловій обробці при температуру 1300°С. По закінченню процесу термообробки жиромаса передавлюється за допомогою газодувки у відстійник, в якому відділяється від рідини та домішок. Далі процес повторюється. Отриманий з відстійника жир подається в котел для витопки. На цій стадії в нього додається розчин сірчаної кислоти для покращення процесу відділення жиру від домішок. Далі очищений жир передається у відстійники, з подальшим його зливанням у тару і транспортується на утилізацію. З метою підвищення вологовіддачі в очищений жир додають сіль. Таким чином при переробці концентрату за даною технологією отримують кормовий жир другого сорту.


ВИСНОВОК

В ході написання комплексного курсового проекту з циклу дисциплін «Екологічна паспортизація територій і підприємств» «Водопостачання, водовідведення і поліпшення якості води» і «Утилізація і рекуперація відходів» відповідно до мети проекту і поставлених завдань були виконані наступні етапи роботи:

1.  Визначені основні розділи екологічного паспорту підприємства та вихідні дані для його створення.

2.  Описані системи, схеми та основні елементи водопостачання та водовідведення населених пунктів та підприємств, можливості трасування каналізаційних мереж та охарактеризовані умови сумісного водовідведення промислових та побутових стічних вод. Вибрана напівроздільна система водовідведення і перпендикулярна схема каналізаційних мереж заданого плану місцевості, запропоноване необхідне устаткування для створення раціональної каналізаційної мережі міста. Визначенні методи поліпшення якості стічних вод підприємств та населених пунктів, що скидаються до у природні водоймища.

3.  Описані способи, методи та технології утилізації і рекуперації промислових та господарсько-побутових відходів.

4.  Визначений склад стічних вод м’ясопереробного підприємства: жир, завислі речовини, БСК пісок, кров, залишки кормів та інші залишки життєдіяльності тварин, часточки м’яса, білок, сіль. Розроблена схема очищення промислових та господарсько-побутових стічних вод м’ясокомбінату і населеного пункту.

5.  Розрахована ступінь необхідного очищення стічних вод міста у процентному відношенні по зваженим речовинам – 87,5%, по БСК – 50,6%.

6.  Визначені раціональні методи очищення та поліпшення якості стічних вод підприємств м’ясопереробної промисловості: механічний, реагентна обробка, екстракція, сорбція, електрофлотокоагуляцію, біологічне очищення.

7.  Розраховані основні параметри електрофлотаційної установки для очищення СВ.

8.  Описані основні технології переробки та утилізації відходів м’ясної промисловості: механічне зневоднення в освітлювачах, підсушування на мулових площах.


Список використаної літератури

1.  Охрана окружающей среды. С.А. Брылов, Л.Г. Грабчак, В.И. Комащенко и др. - М.: Высшая школа, 1985.

2.  ГОСТ 17.0.0.04.- 90 "Экологический паспорт промышленных предприятий. Основные положения".

3.  Методичні вказівки до виконання курсового проекту для студентів денної та заочної форм навчання за спеціальністю 7.070801 „Екологія та охорона навколишнього середовища”. – Кременчук: ІЕНТ, 2002.

4.  Василенко А.А. Водоотведение. Курсовое проектирование. — К.: В. шк. Головное изд-во, 1988, 256 с.

5.  Ф.В. Стальберг "Экология города". - К.: "Либра", 2000.

6.  B.C. Кедров, П.П. Пальгунов, М.А. Сомов. Водоснабжение и канализация: Учебник для вузов. - М..: Стройиздат, 1984. – 288с.

7.  Канализация населенных мест и промышленных предприятий / Лихачев Н.И. и др. Под общей ред. В.Н. Самохина - М.: Стройиздат, 1981. – 639с

8.  Кравченко В.С. Водопостачання та каналізація: Підручник. – „Конкор”, 2003. - 288с.

9.  Данилов Д. Т. Эксплуатация канализационной сети. - М.: Стройиздат, 1977.

10.  Н.Ф. Федоров, A.M. Курганов, М.И. Алексеев Канализационные сети: Примеры расчета-М., Стройиздат, 1985.

11.  СНиП 11-31-74. Нормы проектирования. Водоснабжение. Наружные сети и сооружения. Изд. 3-е. М.: Стройиздат, 1978. с. 45—190.

12.  Водоотведение на промышленных предприятиях. А.И. Мацнев. – Львов: Вища шк. Изд-во при Львов. ун-те, 1986. – 200с.

13.  Лукиных Н. А., Липман Б. Л., Криштул В. П. Методы доочистки сточных вод. Изд. 2-е. М.: Стройиздат, 1978. - 156 с.

14.   Проскуряков В. А., Шмидт Л. И. Очистка сточных вод в химической промышленности. М.—Л.: Стройиздат, 1977. - 464 с.

15.  Ресурсосбережение и экология / Ю.П.Лебединский й др. - К.: Политиздат Украины, 1990. -221 с.

16.  Новиков Ю.В. Экология, окружающая среда и человек. - М.: Агентство ФАИР, 1998. - 320 с.

17.  Хижняк М.І., Нагорна А.М. Здоров'я людини та екологія. - К.: Знання, 1995. 78 с.

18.  Справочник по санитарной очистке городов и поселков / Шевченко Ю.Л., Дмитренко Т.Д. – 2-е изд., перераб и доп. – К.:Будівельник, 1984. – 160с.

19.  Гринин А.С., Новиков В.Н. Промышленные и бытовые отходы: Хранение, утилизация, переработка. – М.: ФАИР-ПРЕСС, 2002. – 336с.

20.  Драгилев А. Й. Устройство и эксплуатация оборудования предприятий пищевой промышленности. - М.: Пищевая промышленность 1979.-257с.Кербунов Ю.В. Экология Николаева. - Николаев, 1997. - 75 с.

21.  Розміщення продуктивних сил / За ред. В.В.Ковалевського - К.: КОО т-ва Знання, 1998. - 546 с.

22.  Технология пищевых производств /Под ред. Л.П.Ковальской - М.: Агропромиздат, 1988. - 286 с.

23.  Україна: прогноз розвитку продуктивних сил. - К.: РВПС України НАН України, 1998. - Том II (додатки).


Страницы: 1, 2, 3, 4


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.