рефераты скачать

МЕНЮ


Дипломная работа: Проект ректификационной установки непрерывного действия для разделения смеси метиловый - этиловый спирт

,

где хА – мольная доля низкокипящего компонента в жидкости;

МА – молекулярная масса низкокипящего компонента, кг/кмоль;

МВ – молекулярная масса высококипящего компонента, кг/кмоль.

Молекулярная масса метилового спирта – 32 кг/кмоль, этилового спирта – 46 кг/кмоль.

Массовый расход исходной смеси, кг/с, определим по формуле

 кг/с

Массовый расход кубового остатка, кг/с, определим по формуле

Gw = Gf – Gd = 8,13-1,32=7,81кг/с

По имеющимся данным о равновесии между жидкостью и паром строим изобары температур кипения и конденсации смеси t=f(x,y) (Рисунок 1) и линию равновесия на диаграмме y=f(x) (Рисунок - 1).

Рисунок 1- Зависимость температур кипения и конденсации от состава фаз

Затем рассчитаем минимальное флегмовое число

Rmin=( xd – у*f )/( у*f – xf )=( 0.95 - 0.3)/(0.3-0.22) = 8,06


где у*f - мольная доля НКК в паре, равновесном с исходной смесью, определяется по диаграмме х-у (рис 2) у*f = 0,3

Оптимальное флегмовое число определим из условия получения минимального объема колонны, пропорционального произведению nT(R+1),где nT –число ступеней изменения концентрации (теоретическое число тарелок).

Таблица 2- Данные для расчета оптимального флегмового числа

β

R= β Rmin

В

nт(R+1)

1,1 8,87 0,09 17 167,7
1,2 9,67 0,08 15 160,05
2,0 16,1 0,05 12 205,2
2,8 22,57 0,04 11 259,3
3,6 29,02 0,03 10 300,2

Строим график зависимости nт(R+1) от R. Находим min точку и опускаем из неё перпендикуляр на ось Х. Эта точка и будет являться оптимальным флегмовым числом. В нашем случае Rопт=9,67.

Рисунок 2 – Определение оптимального флегмового числа.

Уравнение рабочих линий

А) Верхней (укрепляющей) части колонны


Б) Нижней (исчерпывающей) части колонны

1.2 Определение скорости пара и диаметра колонны

Рассчитываем средние концентрации низкокипящего компонента в жидкости:

а) верхней (укрепляющей) части колонны:

;

.

б) нижней (исчерпывающей) части колонны:

;

.

Средние температуры пара определяем по t - x,y (Рисунок 1):

а) при ;

б) при .

Средняя плотность жидкости в колонне:


где: ρА,ρВ – плотности низкокипящего и высококипящего компонентов при средней температуре в колонне, соответственно, кг/м3

а) верхней (укрепляющей) части колонны:

б) нижней (исчерпывающей) части колонны:

Для колоны в целом:

Рассчитываем средние концентрации низкокипящего компонента в паре:

yF – концентрация низкокипящего компонента в паре на питающей тарелке. Определяется в точке пересечения линий рабочих концентраций, построенных при оптимальном флегмовом числе R=9,67.

yF=0,29

а) верхней (укрепляющей) части колонны:

.

б) нижней (исчерпывающей) части колонны:


.

Средние температуры пара определяем по t - x,y (рис.4):

а) при ;

б) при.

Средние мольные массы и плотности пара:

а) в верхней части колонны

;

б) в нижней части колонны

.

Средняя плотность пара в колонне:

;

а) в верхней части колонны

;

б) в нижней части колонны

;

.

Средняя плотность пара в колонне:

;


.

Определяем скорость пара в колонне. Принимаем расстояние между тарелками h = 450 мм. По графику (рис.4,8 стр.69 [2]) находим С = 630.

;

.

где MD – мольная масса дистиллята.

.

,

Тогда диаметр колонны:

.

По каталогу – справочнику «Колонне аппараты» принимаем D = 2600 мм. Тогда скорость пара в колонне будет:

;


1.3 Определим высоту колонны

Высоту колонны определим графо- аналитическим методом, т.е. последовательно рассчитываем коэффициенты массоотдачи, массопередачи, коэффициенты действия тарелок; строим кинетическую кривую и определяем число действительных тарелок.

Коэффициент массоотдачи в паровой фазе рассчитывают по формуле:

где - коэффициент диффузии паров в метиловом спирте, рассчитывается по формуле:

- критерий Рейнольдса для паровой фазы

,

где - коэффициент динамической вязкости смеси метилового и этилового спиртов при средней температуре.

Вязкость рассчитывают по формулам:

,


где - мольные массы пара и отдельных компонентов, кг/кмоль; μср.п ,μА, μВ – соответствующие им динамические коэффициенты вязкости:

в верхней части колоны при температуре t=71,40С

μАп= 0,010946 мПа·с, μВп= 0,010047 мПа·с

в нижней части колонны при t=76,80С

μАп= 0,01112 мПа·с, μВп= 0,01022 мПа·с;

yА, yВ – объемные доли компонентов в паровой смеси.

Тогда:

Рассчитываем коэффициент диффузии паров по формуле:

Критерий Рейнольдса для паровой фазы:

Рассчитав все эти величины, определим и коэффициент массоотдачи в паровой в верхней и нижней частях колонны фазе по уравнениям:

Коэффициент массоотдачи в жидкой фазе:

гдеDж- коэффициент диффузии метилового спирта в жидком этиловом спирте, м/с2; Мж.ср.- средняя мольная масса жидкости в колоне, кг/кмоль

Pr/ ж- диффузионный критерий Прандля

Коэффициент диффузии пара в жидкости Dt связан с коэффициентом диффузии D20 следующей приближенной зависимостью:

где b- температурный коэффициент. Определяется по формуле:

где μж- динамический коэффициент вязкости жидкости при 200С, мПа·с; ρ- плотность жидкости, кг/м3.

Коэффициент диффузии в жидкости при 200С можно определять по формуле:


где μж- динамический коэффициент вязкости жидкости, мПа·с; νА, νВ- мольные объемы компонентов А и В;А и В – коэффициенты, зависящие от свойств растворенного вещества и растворителя; МА, МВ- мольные массы растворенного вещества и растворителя.

Динамический коэффициент вязкости жидкости:

где μА, μВ- коэффициенты динамической вязкости компонентов А и В при соответствующей температуре [2, c.516].

Коэффициент динамической вязкости жидкости для верхней и нижней части колонны при температуре 200С равен:

Коэффициент диффузии метилового спирта в жидком этиловом спирте при 200С для верхней и нижней чисти колонны:

Расчет коэффициента b.Для верхней и нижней части колонны:

Коэффициент диффузии метилового спирта в жидком этиловом спирте при средней температуре для верхней и нижней части колонны:

Рассчитываем коэффициент динамической вязкости жидкости в верхней и нижней части колонны при средней температуре:

при 700С: μА=0,321 мПа·с; μВ=0,625 мПа·с

при 76,60С: μА=0,321 мПа·с; μВ=0,56 мПа·с

Критерий Прандля для верхней и нижней части колонны:

Средняя мольная масса жидкости в верхней и нижней части колонны:

Рассчитав все величины, определяем коэффициент массоотдачи в жидкой фазе по уравнению:

Коэффициенты массопередачи определяем по уравнению:

где m – тангенс угла наклона линии равновесия на рабочем участке.

Для определения угла наклона разбиваем ось х на участки и для каждого из них находим среднее значение тангенса как отношение разности ординат (у*-у) к разности абсцисс (х-х*), т.е.

Подставляем найденные значения коэффициентов массоотдачи βп и βж и тангенсов углов линии равновесия в уравнение, находим величину коэффициента массопередачи для каждого значения х в пределах от 0,07 до 0,95.

Полученные данные используем для определения числа единиц переноса nу в паровой фазе:

где φ – отношение рабочей площади к свободному сечению колонны, равному 0,8.

Допуская полное перемешивание жидкости на тарелке имеем:

где η=АВ/АС – КПД тарелки.

Результаты всех расчетов сводим в таблицу 3.1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Страницы: 1, 2, 3, 4


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.