рефераты скачать

МЕНЮ


Дипломная работа: Друга фаза композитів на основі міді, що виготовлені методом осадження у вакуумі

Дипломная работа: Друга фаза композитів на основі міді, що виготовлені методом осадження у вакуумі

ДИПЛОМНА РОБОТА

"Друга фаза композитів на основі міді, що виготовлені методом осадження у вакуумі"


Вступ

Важливою задачею сучасної науки матеріалознавства є створення матеріалів з високим комплексом механічних та фізичних властивостей. Це обумовлено постійно зростаючими вимогами до конструкційних матеріалів. Значне підвищення цих вимог обумовлено прагненням до різкої зміни характеристик енергетичних, транспортних та інших установок – підвищення КПД, потужності, строку служби та зниження габаритних розмірів. Відомим методом рішення цієї задачі є розробка та створення композиційних матеріалів. Однім із класів композиційних матеріалів є дисперсно-зміцнені композити.

Дисперсно-зміцнені композиційні матеріали на основі міді дістали широкого використання в таких галузях як електротехніка, мікроелектроніка та ядерна техніка. Відомо, що рівень фізико-механічних властивостей дисперсно-зміцнених композиційних бінарних систем (наприклад, Cu–Mo, Cu–W, Cu–Ta, Cu-Co, Cu-Fe) залежить від ступеня дисперсності структурних елементів та вмісту зміцнюючої фази. За умови, що частки зміцнюючої фази не перерізаються дислокаціями, характеристики міцності визначає не розмір самих часток, а відстань між ними, також важливі рівномірність розподілення та характер зв’язку частка-матриця.

Зменшення розміру та забезпечення відсутності сегрегацій зміцнюючих часток дозволить знизити вміст другої фази, без зниження характеристик міцності та підвищити електропровідність композиційних матеріалів, що припускає велику економічну користь. Це неможливо без глибокого знання структури композита та її змін під впливом технологічних чинників. Для вивчення структури композитів зміцнених нанорозмірними частками другої фази та з розміром зерна матриці менше 0,5 мкм доцільно використання методу електронної мікроскопії, це дуже інформативний метод. Метод дозволяє наглядно представити структуру, що вивчається та співпоставити її з дифракційною картиною. Такі дослідження та застосування їх результатів при виробництві композитів та деталей з них викликають велику цікавість.


1. Аналітичний огляд джерел інформації

1.1 Переваги дисперсно-зміцнених композиційних матеріалів над традиційними сплавами

Інтенсивний розвиток найважливіших галузей техніки подає все більш високі вимоги до конструкційних матеріалів. Значне підвищення цих вимог обумовлено прагненням до різкої зміни параметрів (підвищення КПД, міцності, термічної стабільності та зниження габаритних розмірів) енергетичних, транспортних та інших установок.

Основними шляхами підвищення міцності металів [1], є: механічне деформування на холоду (нагартовування); сплавлення з компонентами, що входять до твердого розчину на базі ґратки основного металу; виготовлення високодисперсної суміші фаз шляхом загартування сплаву на пересичений твердий розчин з послідуючим зміцнювальним відпуском чи старінням; додавання до розчину компонентів, що утворюють вже у процесі кристалізації нову, більш тверду фазу у вигляді сітки по границям зерен основної фази.

Додаткове зміцнення у кожному з вказаних випадків (за винятком ливарних сплавів, які не підлягають деформуванню) може бути досягнуто використанням термомеханічної обробки, що формує стійку субструктуру[2].

Одночасна дія всіх вказаних чинників зміцнення виконується при температурах, що не перевищують (0,3–0,4) Тпл. Саме на цій основі отримані в наш час сталі з міцністю до 300–350 кгс/мм2.

При підвищенні температури до (0,5–0,6) Тпл різко слабшає зміцнююча дія від утворення твердих розчинів. Зміцнення за рахунок дисперсних виділень зберігається до (0,6–0,7) Тпл., і тільки додаткове ускладнення складу і будови виділяючихся фаз та легування твердого розчину матриці дозволяє інколи підняти робочу температуру сплавів до (0,7–0,8) Тпл. Складне легування повинно забезпечувати підвищення стабільності твердого матричного розчину та зміцнюючих фаз за рахунок уповільнення дифузійних процесів, які можуть порушити тонку гетерофазну структуру сплаву.

Успіхи у комплексному легуванні разом з оптимальною термічною обробкою дозволили, наприклад, підвищити рівень робочих температур нікелевих сплавів до 1000−1050 °С. Додаткове підвищення робочих температур (до 1100 °С для нікелевих сплавів) досягається удосконаленням технології (наприклад, направленою кристалізацією).

Разом з тим резерви подальшого підвищення жароміцності шляхом додаткового легування на сьогоднішній день вичерпуються. Тим паче, введення більшої кількості легуючих елементів викликає негативні наслідки: знижується температура солідусу сплавів, утворюються скопління крихких фаз, що призводять до зниження опору руйнуванню, внаслідок погіршення характеристик пластичності багато жароміцних сплавів стають нетехнологічними.

Усунення різниці між вимогами сучасної техніки до конструкційних матеріалів досягається шляхом утворення і використання композиційних матеріалів.

За механізмом зміцнення композиційні матеріали можна розділити на дві групи. Основою зміцнення матеріалів першої групи є принцип армування металевої матриці високоміцними несучими елементами. Цей принцип був раніше реалізований у неметалевих конструкційних матеріалах – залізобетонні, склопластиках і т. п. Рівень міцності (та жароміцності) матеріалів цієї групи залежить в основному від властивостей самих елементів, що армують, а роль матриці зводиться головним чином до перерозподілу напружень між елементами, що армують.

В композиційних матеріалах другої групи, до яких відносять і дисперсно-зміцнені матеріали, головна роль в зміцненні належить структурним чинникам. Матриця в цих сплавах є основним елементом, що несе навантаження, роль фази, що зміцнює зведена в основному до полегшення формування дислокаційної субструктури в процесах виготовлення сплавів, головним чином під час деформації та термічної обробки, і до стабілізації цієї субструктури в умовах експлуатації [3].

Дисперсно-зміцнені сплави принципово не відрізняються за механізмом зміцнення від класичних старіючих сплавів. Основна різниця між ними полягає в тому, що якщо в старіючих сплавах фазові співвідношення визначаються фізико-хімічними процесами розпаду пересичених твердих розчинів, то в дисперсно-зміцнених сплавах фазові співвідношення задаються штучно в процесі виготовлення.

Активний вплив на морфологію, дисперсність та характер розподілу фази, що зміцнює дозволяє отримати дисперсно-зміцнених сплавах сполуку властивостей, яка недосяжна в звичайних сплавах. Використання у якості фаз, що зміцнюють стабільних тугоплавких сполучень, що не взаємодіють активно з матричним металом і не розчиняються в ньому аж до температури його плавлення, забезпечує можливість збереження мікрогетерогенної будови та дислокаційної субструктури, що формується у процесі деформації і термічної обробки, до передплавильних температур. Це дозволяє зберегти тривалу роботоздатність матеріалів до (0,9–0,95) Тпл.

Ефективність зміцнюючої дії часток другої фази, стабільних у контакті з металевою матрицею, визначається геометричними чинниками структури. З аналізу великої кількості експериментальних даних та теоретичних зображень [4] випливає, що максимальний ефект досягається під час виконання наступних умов:

1.  Розмір часток, що зміцнюють не повинен перевищувати 0,01–0,05 мкм. Частки великих розмірів при високих температурах стають неефективними, хоча при помірних та низьких температурах ще можуть задавати зміцнюючий вплив.

2.  Середня відстань між частками, що зміцнюють повинна бути не більш ніж 0,1–0,5 мкм при рівномірному їх розподілі в матриці.

Зазначені геометричні чинники визначають необхідний об’ємний вміст часток, що зміцнюють в сплаві адже для рівномірного розподілення в об’ємі сферичних включень виконується співвідношення:

де L – відстань між центрами часток;

d – діаметр часток;

f – об’ємна доля часток.

Розрахунок показує, що ефективне зміцнення забезпечується при вмісті фази, що зміцнює не вище 5–10℅ (об’ємн.), в той час як в сучасних жароміцних старіючих сплавах об’ємний вміст зміцнюючих виділень досягає 60℅.

Вміст фази, що зміцнює принципово відрізняє дисперсно-зміцнені сплави від керметів. Якщо в перших невелика кількість твердих тугоплавких часток зміцнює метал, то в останніх, навпаки, невелика кількість металу, що вводиться служить для пластифікуючої зв’язки твердої та тугоплавкої кераміки.

Утворення в сплаві рівномірної дисперсії стабільних аж до температури її плавлення ультра дисперсних часток, що не взаємодіють з матрицею можливо тільки штучним шляхом в наслідок використання специфічних технологічних прийомів виготовлення сплавів. При цьому активний вплив на структуру сплаву дозволяє в широких межах регулювати фізико-механічні властивості при незмінному хімічному складі.

Невеликий об’ємний вміст фаз, що зміцнюють сприяє, з одного боку, збереженню в дисперснозміцених сплавах високої пластичності, що характерна чистим металам та твердим розчинам, а з іншого боку, ця обставина ускладнює поєднування високої жароміцності з високими характеристиками міцності при низьких та помірних температурах. Звідси випливає, що метод дисперсного зміцнення в першу чергу є ефективним способом підвищення високотемпературної міцності та жароміцності, причому при таких температурах, коли інші методи, наприклад старіння, стають неефективними.

Якщо схематично зобразити зміну міцності відносно температури (рис. 1.1), то для чистих металів характерно достатньо монотонне знеміцнювання з більш інтенсивним падінням міцності при рекристалізації – (0,3–0,4) Тпл. Для дисперснозміцнених сплавів характерна схожа залежність міцності від температури, але відношення міцності сплаву до міцності матричного металу постійно збільшується з підвищенням температури. Наприклад, якщо при температурах до (0,3–0,4) Тпл це відношення звичайно не перевищує 2–3, то з приближенням до температури плавлення воно досягає 10–20. в старіючих сплавах високий рівень міцності зберігається до 0,7–0,8 температури плавлення основного металу, тобто до початку інтенсивної коагуляції і розчинення виділень, що зміцнюють. Подальше міцність старіючих сплавів падає настільки інтенсивно, що з приближенням до температури плавлення стає навіть нижче міцності чистих металів внаслідок зниження температури плавлення при легуванні.

Оцінюючи експлуатаційні властивості дисперсно-зміцнених сплавів потрібно мати на увазі характерну для них дуже високу стабільність характеристик міцності у часі.

У ряді випадків метод дисперсного зміцнення виявляється незамінним при утворенні матеріалів, що експлуатуються при помірних і навіть низьких температурах, але повинні, поряд з підвищеною міцністю та низькою швидкістю повзучості, мати певний комплекс фізичних властивостей. Сюди відносяться, наприклад, сплави для електротехніки на основі міді і срібла, в яких вимагається збереження високої електропровідності, цирконієві сплави для атомної енергетики з високою прозорістю для нейтронів та ін. Деякі дисперснозміцнені сплави вийшли за межі лабораторних розроблень, їх виготовляють в промислових масштабах та успішно використовують в конструкціях.

1.2 Дисперсно-зміцнені матеріали на основі міді

1.2.1 Властивості та використання мідних дисперсно-зміцнених матеріалів

Під час опису властивостей дисперсно-зміцнених матеріалів головна увага приділяється найбільш важливим експлуатаційним характеристикам, таким як межа міцності, показники пластичності, опір повзучості, тривала міцність, жаростійкість. При оцінюванні досягнутого рівня властивостей у різноманітних системах виникають труднощі співпоставлення, оскільки навіть стосовно до тих самих сплавів у різних роботах використані суттєво різні схеми отримання порошків та напівфабрикатів. Разом з тим по мірі удосконалення техніки отримання напівфабрикатів та оптимізації параметрів деформування та термічної обробки властивості майже всіх дисперснозміцнених сплавів будуть підвищуватися. Найбільш перспективними матеріалами в цьому відношенні є конденсовані дисперснозміцнені системи метал-метал з компонентами, що взаємно не розчиняються, які за можливістю зберігати задані властивості після впливу високих температур можуть перевершувати композиції метал-окисел. Новим технологічним прийомом синтезування композиційних матеріалів є метод вакуумної конденсації, який володіє рядом переваг перед порошковою металургією та внутрішнім окисленням. Здатність будь-яких речовин утворювати однорідну суміш у паровому стані та специфічні умови над швидкої заготовки, що реалізуються при конденсації цього пару на холодній підложці у вакуумі дозволяють отримувати матеріали, які неможливо отримати іншими методами. Характерною відмінністю конденсованих плівкових композитів є виключно висока неровноважність їх структури, яка зумовлює їх високі властивості міцності.

Найбільш цінними технічними властивостями міді, що визначають основні галузі її застосування, є високі електропровідність та теплопровідність. При звичайних методах легування вимоги підвищення жароміцності і збереження високої електропровідності вступають у супереч. Наслідком цього є те, що леговані сплави з електропровідністю не нижче 0,8 від електропровідності чистої міді характеризуються максимальним значенням відношення міцності сплаву до міцності матричного металу при температурах 0,5–0,6 Тпл. При більш високих температурах це відношення падає занадто різко, що вже біля 700 °С (≈0,7 Тпл) леговані сплави не мають переваг міцності відносно чистої міді.

Для дисперснозміцненої міді коефіцієнт зміцнення з підвищенням температури невпинно зростає, що забезпечує високу жароміцність при температурах 0,9–0,95 Тпл.

Як видно з рисунку 1, переваги дисперсно-зміцнених матеріалів перед звичайними виявляються вже при температурах вище 0,5Тпл (400 °С) и з підвищенням температури виявляються більш виразно.

Завдяки занадто малій розчинності кисню (менш 0,001% (за масою) при 800 °С) та низькій термодинамічній стабільності власних окислів мідь ефективно зміцнюється тугоплавкими окислами, що не взаємодіють з нею аж до температури плавлення. Найбільш високі значення жароміцності отримані при введені окислів алюмінію, берилію та торію. Для введення зміцнюючих окислів використовують методи внутрішнього окислення, хімічного осадження та відновлення у розчинах, які дають майже однакові результати. З підвищенням об’ємного вмісту зміцнюючої фази (при збереженні середнього розміру часток) міцність дисперснозміцненої міді підвищується, але для збереження високої електропровідності та хорошої пластичної у промислових жароміцних сплавах об’ємний вміст окислів не перевищує 1,5–2%. При такому вмісті зміцднюючої фази міцність при кімнатній температурі складає 380–450 МПа (в залежності від способу приготування порошків та режимів обробки напівфабрикатів) підчас подовжування 15–20%. Високий запас пластичності дозволяє методами холодного деформування отримувати прутки, листи, фольгу та проволоку малих перетинів.

Дослідження температурної залежності електропровідності міді, яка була зміцнена двоокисом торію і отримана з порошків, що виготовлені хімічним відновленням у розчинах, показало, що при кімнатній температурі вона складає біля 85% від електропровідності чистої міді, але з підвищенням температури ця різниця зменшується та при 800 °С значення електропровідності майже співпадають. У промислових марках, що зміцнені окислами берилію чи алюмінію та отримані з використанням методу хімічного осадження, електропровідність змінюється в межах 0,8–0,9 від електропровідності безкисневої провідникової міді.

Висока жароміцність дисперснозміцненої міді може бути вигідно використана при виготовлені обмоток роторів двигунів, що працюють при підвищених температурах, трубчатих теплообмінників, деталей електровакуумних приладів, контактів.

Широке використання дисперснозміцнена мідь знайшла у зварювальній техніці при виготовлені електродів для стикового та роликового зварювання. Робоча частина мідних електродів зварювальних машин у процесі експлуатації може нагріватися до 600–800 °С, внаслідок чого відбувається швидкий спад твердості і міцності, який призводить до погіршення стабільності та якості зварювання.

Результати досліджень механічних властивостей дисперсно-зміцнених композицій та аналіз механізмів їх зміцнення свідчить про те, що рівень їхніх характеристик міцності визначається складом та структурними параметрами матриці та фаз, що зміцнюють [5]. Специфіка структури вакуумних конденсатів міститься у високій дисперсності її елементів, сильній неровноважності та складному внутрішньому напруженому стані.

Високі властивості міцності дисперсно-зміцнених матеріалів обумовлені наявністю в об’ємі матриці некогерентних високодисперсних часток другої фази, які в значно більшому ступені, ніж субграниці та границі зерен чинять опір руху дислокацій під час деформування. Частки другої фази впливають також і на структуру матриці, знижують розмір зерна та переборюють у значному ступіні процеси рекристалізації.

1.2.2 Вплив дисперсних некогерентних часток двофазних сплавів на рекристалізацію

Відомо, що дисперсні тверді некогерентні частки можуть уповільнювати рекристалізацію металу.

Рекристалізація уповільнюється за двома причинами: по-перше, частки другої фази можуть обумовити стабільність дислокаційної структури; по-друге, вони можуть чинити опір перебудові дислокацій та ґратки, заважаючи утворенню границь зерен та їх міграції.

Підвищений опір рекристалізації полікристалічних матеріалів повинен проявлятися внаслідок стопорного ефекту виділень, що зупиняють дислокації, а не зумовлюватися границями зерен чи дислокаційними субграницями. Цей ефект можна розділити на дві категорії: зерно граничний та субграничний.

Ефективне подавлення рекристалізації відбувається у гетерофазних матеріалах, у яких відстань між частками менш ніж 10-3 мм. Так, наприклад, при відстані між частками, що становить декілька десятків нанометрів, рекристалізація може не відбуватися навіть при температурах відпалу, які приближуються до температури плавлення матеріалу матриці. Це відноситься в першу чергу до конденсованих дисперсно-зміцнених композицій, що мають дуже дисперсні, близько розташовані одна до одної зміцнюючі частки.

1.2.3 Методи виготовлення дисперсно-зміцнених композиційних матеріалів

1) Порошковий метод виготовлення дисперсно-зміцнених композиційних матеріалів (ДКМ). Виготовлюють суміші порошків матричного матеріалу та зміцнюючої фази. Зазвичай це суміші порошків металів з порошками оксидів, боридів, карбідів, потім пресування, спікання та термічна обробка. Недоліками цього методу є те, що цією технологією складно отримувати зміцнюючі частки розміром менш ніж 1000Å; під час спікання відбувається коагуляція часток та в результаті цього ДКМ поступається старіючим сплавам при помірних температурах.

2) Метод внутрішнього окислення. Технологія полягає в тому, що спочатку отримають сплав матричного матеріалу, легований метал, потім цей сплав нагрівають та витримують у атмосфері кисню, при цьому відбувається дифузія атомів кисню у глибину металу та їх взаємодія з легуючими елементами. Внаслідок цього в об’ємі матриці формуються частки зміцнюючої фази. Недоліками цього методу є обмежений вибір систем а також те, що по глибині металу частки мають не однаковий розмір, головним чином через те, що тривалість процесу для об’ємів, що знаходяться на поверхні та в середині зразка різна. У зв’язку з цим методом внутрішнього окислення отримують або тонкі фольги, або дифузійні шари.

3) Метод композиційних електрохімічних покриттів. Технологія полягає в тому, щоб до електроліту додавати високодисперсні порошки зміцнюючих часток (окисли, бориди, карбіди), потім відбувається процес отримання покриттів (електроліз). Частки порошку, які находяться в електроліті поглинаються фронтами кристалізації, тобто відбувається «замурування» їх в об’ємі. Недоліками цієї технології є отримання тільки тонких шарів, які насичуються Н2 та іншими елементами, що ходять до складу електроліту, а також цим методом неможливо отримати високодисперсні частки.

4) Метод кристалізації з парової фази у вакуумі. Кристалізація з парової фази має необмежені можливості вибору складових компонентів, дозволяє отримувати матеріали з рівномірним розподіленням часток другої фази по об’єму матриці та відкриває великі перспективи у рішенні проблеми диспергування зміцнюючих часток.

У якості зміцнюючої фази у конденсованих композиціях найбільше розповсюдження отримали окисли, а також карбіди, бориди, нітриди та метали, що мають обмежену розчинність в матриці або зовсім її не мають.

Технологія полягає в тому, що відбувається одночасне осадження матричного металу та матеріалу зміцнюючої фази. Під час конденсації на поверхні деталі чи підложці відбувається формування сплаву чи двофазної системи. Регулюючи технологічні параметри: температуру підложки, швидкість конденсації компонентів, ступінь вакууму можна отримати широкий діапазон структурних станів [7]. Таким чином можна отримувати будь-який ступінь дисперсності часток зміцнюючої фази, а також можна отримувати сплави таких металів, які не мають взаємної розчинності у рівноважних умовах. Якщо такі сплави піддати старінню шляхом термічної обробки, то в результаті незворотного розпаду пересичених розчинів формується композиційна структура, а матеріали, що отримані таким методом мають такі ж переваги як ДКМ та як старіючі сплави.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.