рефераты скачать

МЕНЮ


Реферат: Основные функции и компоненты ядра ОС UNIX

Традиционное решение ОС UNIX состоит в использовании динамически изменяющихся приоритетов. Каждый процесс при своем образовании получает некоторый устанавливаемый системой статический приоритет, который в дальнейшем может быть изменен с помощью системного вызова nice (см. п. 3.1.3). Этот статический приоритет является основой начального значения динамического приоритета процесса, являющегося реальным критерием планирования. Все процессы с динамическим приоритетом не ниже порогового участвуют в конкуренции за процессор (по схеме, описанной выше). Однако каждый раз, когда процесс успешно отрабатывает свой квант на процессоре, его динамический приоритет уменьшается (величина уменьшения зависит от статического приоритета процесса). Если значение динамического приоритета процесса достигает некоторого нижнего предела, он становится кандидатом на откачку (своппинг) и больше не конкурирует за процессор.

Процесс, образ памяти которого перемещен во внешнюю память, также обладает динамическим приоритетом. Этот приоритет не дает процессу право конкурировать за процессор (да это и невозможно, поскольку образ памяти процесса не находится в основной памяти), но он изменяется, давая в конце концов процессу возможность вновь вернуться в основную память и принять участие в конкуренции за процессор. Правила изменения динамического приоритета для процесса, перемещенного во внешнюю память, в принципе, очень просты. Чем дольше образ процесса находится во внешней памяти, тем более высок его динамический приоритет (конкретное значение динамического приоритета, конечно, зависит от его статического приоритета). Конечно, раньше или позже значение динамического приоритета такого процесса перешагнет через некоторый порог, и тогда система принимает решение о необходимости возврата образа процесса в основную память. После того, как в результате своппинга будет освобождена достаточная по размерам область основной памяти, процесс с приоритетом, достигшим критического значения, будет перемещен в основную память и будет в соответствии со своим приоритетом конкурировать за процессор.

Как вписываются в эту схему процессы реального времени? Прежде всего, нужно разобраться, что понимается под концепцией "реального времени" в ОС UNIX. Известно, что существуют по крайней мере два понимания термина - " мягкое реальное время (soft realtime)" и " жесткое реальное время (hard realtime)".

Жесткое реальное время означает, что каждое событие (внутреннее или внешнее), происходящее в системе (обращение к ядру системы за некоторой услугой, прерывание от внешнего устройства и т.д.), должно обрабатываться системой за время, не превосходящее верхнего предела времени, отведенного для таких действий. Режим жесткого реального времени требует задания четких временных характеристик процессов, и эти временные характеристики должны определять поведение планировщика распределения ресурсов процессора(ов) и основной памяти.

Режим мягкого реального времени, в отличие от этого, предполагает, что некоторые процессы (процессы реального времени) получают права на получение ресурсов основной памяти и процессора(ов), существенно превосходящие права процессов, не относящихся к категории процессов реального времени. Основная идея состоит в том, чтобы дать возможность процессу реального времени опередить в конкуренции за вычислительные ресурсы любой другой процесс, не относящийся к категории процессов реального времени. Отслеживание проблем конкуренции между различными процессами реального времени относится к функциям администратора системы и выходит за пределы этого курса.

В своих самых последних вариантах ОС UNIX поддерживает концепцию мягкого реального времени. Это делается способом, не выходящим за пределы основополагающего принципа разделения времени. Как мы отмечали выше, имеется некоторый диапазон значений статических приоритетов процессов. Некоторый поддиапазон этого диапазона включает значения статических приоритетов процессов реального времени. Процессы, обладающие динамическими приоритетами, основанными на статических приоритетах процессов реального времени, обладают следующими особенностями:

  1. Каждому из таких процессов предоставляется неограниченный сверху квант времени на процессоре. Другими словами, занявший процессор процесс реального времени не будет с него снят до тех пор, пока сам не заявит о невозможности продолжения выполнения (например, задав обмен с внешним устройством).
  2. Процесс реального времени не может быть перемещен из основной памяти во внешнюю, если он готов к выполнению, и в оперативной памяти присутствует хотя бы один процесс, не относящийся к категории процессов реального времени (т.е. процессы реального времени перемещаются во внешнюю память последними, причем в порядке убывания своих динамических приоритетов).
  3. Любой процесс реального времени, перемещенный во внешнюю память, но готовый к выполнению, переносится обратно в основную память как только в ней образуется свободная область соответствующего размера. (Выбор процесса реального времени для возвращения в основную память производится на основании значений динамических приоритетов.)

Тем самым своеобразным, но логичным образом в современных вариантах ОС UNIX одновременно реализована как возможность разделения времени для интерактивных процессов, так и возможность мягкого реального времени для процессов, связанных с реальным управлением поведением объектов в реальном времени.

Традиционный механизм управления процессами на уровне пользователя

Как свойственно операционной системе UNIX вообще, имеются две возможности управления процессами - с использованием командного языка (того или другого варианта Shell) и с использованием языка программирования с непосредственным использованием системных вызовов ядра операционной системы. Возможности командных языков мы будем обсуждать в пятой части этого курса, а пока сосредоточимся на базовых возможностях управления процессами на пользовательском уровне, предоставляемых ядром системы.

Прежде всего обрисуем общую схему возможностей пользователя, связанных с управлением процессами. Каждый процесс может образовать полностью идентичный подчиненный процесс с помощью системного вызова fork() и дожидаться окончания выполнения своих подчиненных процессов с помощью системного вызова wait. Каждый процесс в любой момент времени может полностью изменить содержимое своего образа памяти с помощью одной из разновидностей системного вызова exec (сменить образ памяти в соответствии с содержимым указанного файла, хранящего образ процесса (выполняемого файла)). Каждый процесс может установить свою собственную реакцию на "сигналы", производимые операционной системой в соответствие с внешними или внутренними событиями. Наконец, каждый процесс может повлиять на значение своего статического (а тем самым и динамического) приоритета с помощью системного вызова nice.

Для создания нового процесса используется системный вызов fork. В среде программирования нужно относиться к этому системному вызову как к вызову функции, возвращающей целое значение - идентификатор порожденного процесса, который затем может использоваться для управления (в ограниченном смысле) порожденным процессом. Реально, все процессы системы UNIX, кроме начального, запускаемого при раскрутке системы, образуются при помощи системного вызова fork.

Вот что делает ядро системы при выполнении системного вызова fork:

  1. Выделяет память под описатель нового процесса в таблице описателей процессов.
  2. Назначает уникальный идентификатор процесса (PID) для вновь образованного процесса.
  3. Образует логическую копию процесса, выполняющего системный вызов fork, включая полное копирование содержимого виртуальной памяти процесса-предка во вновь создаваемую виртуальную память, а также копирование составляющих ядерного статического и динамического контекстов процесса-предка.
  4. Увеличивает счетчики открытия файлов (процесс-потомок автоматически наследует все открытые файлы своего родителя).
  5. Возвращает вновь образованный идентификатор процесса в точку возврата из системного вызова в процессе-предке и возвращает значение 0 в точке возврата в процессе-потомке.

Понятно, что после создания процесса предок и потомок начинают жить своей собственной жизнью, произвольным образом изменяя свой контекст. В частности, и предок, и потомок могут выполнить какой-либо из вариантов системного вызова exec (см. ниже), приводящего к полному изменению контекста процесса.

Чтобы процесс-предок мог синхронизовать свое выполнение с выполнением своих процессов-потомков, существует системный вызов wait. Выполнение этого системного вызова приводит к приостановке выполнения процесса до тех пор, пока не завершится выполнение какого-либо из процессов, являющихся его потомками. В качестве прямого параметра системного вызова wait указывается адрес памяти (указатель), по которому должна быть возвращена информация, описывающая статус завершения очередного процесса-потомка, а ответным (возвратным) параметром является PID (идентификатор процесса) завершившегося процесса-потомка.

Сигнал - это способ информирования процесса со стороны ядра о происшествии некоторого события. Смысл термина "сигнал" состоит в том, что сколько бы однотипных событий в системе не произошло, по поводу каждой такой группы событий процессу будет подан ровно один сигнал. Т.е. сигнал означает, что определяемое им событие произошло, но не несет информации о том, сколько именно произошло однотипных событий.

Примерами сигналов (не исчерпывающими все возможности) являются следующие:

  • окончание процесса-потомка (по причине выполнения системного вызова exit или системного вызова signal с параметром "death of child (смерть потомка)";
  • возникновение исключительной ситуации в поведении процесса (выход за допустимые границы виртуальной памяти, попытка записи в область виртуальной памяти, которая доступна только для чтения и т.д.);
  • превышение верхнего предела системных ресурсов;
  • оповещение об ошибках в системных вызовах (несуществующий системный вызов, ошибки в параметрах системного вызова, несоответствие системного вызова текущему состоянию процесса и т.д.);
  • сигналы, посылаемые другим процессом в пользовательском режиме (см. ниже);
  • сигналы, поступающие вследствие нажатия пользователем определенных клавишей на клавиатуре терминала, связанного с процессом (например, Ctrl-C или Ctrl-D);
  • сигналы, служащие для трассировки процесса.

Для установки реакции на поступление определенного сигнала используется системный вызов

oldfunction = signal(signum, function),

где signum - это номер сигнала, на поступление которого устанавливается реакция (все возможные сигналы пронумерованы, каждому номеру соответствует собственное символическое имя; соответствующая информация содержится в документации к каждой конкретной системе UNIX), а function - адрес указываемой пользователем функции, которая должна быть вызвана системой при поступлении указанного сигнала данному процессу. Возвращаемое значение oldfunction - это адрес функции для реагирования на поступление сигнала signum, установленный в предыдущем вызове signal. Вместо адреса функции во входных параметрах можно задать 1 или 0. Задание единицы приводит к тому, что далее для данного процесса поступление сигнала с номером signum будет игнорироваться (это допускается не для всех сигналов). Если в качестве значения параметра function указан нуль, то после выполнения системного вызова signal первое же поступление данному процессу сигнала с номером signum приведет к завершению процесса (будет проинтерпретировано аналогично выполнению системного вызова exit, см. ниже).

Система предоставляет возможность для пользовательских процессов явно генерировать сигналы, направляемые другим процессам. Для этого используется системный вызов

kill(pid, signum)

(Этот системный вызов называется "kill", потому что наиболее часто применяется для того, чтобы принудительно закончить указанный процесс.) Параметр signum задает номер генерируемого сигнала (в системном вызове kill можно указывать не все номера сигналов). Параметр pid имеет следующие смысл:

  • если в качестве значения pid указано целое положительное число, то ядро пошлет указанный сигнал процессу, идентификатор которого равен pid;
  • если значение pid равно нулю, то указанный сигнал посылается всем процессам, относящимся к той же группе процессов, что и посылающий процесс (понятие группы процессов аналогично понятию группы пользователей; полный идентификатор процесса состоит из двух частей - идентификатора группы процессов и индивидуального идентификатора процесса; в одну группу автоматически включаются все процессы, имеющие общего предка; идентификатор группы процесса может быть изменен с помощью системного вызова setpgrp);
  • если значение pid равно -1, то ядро посылает указанный сигнал всем процессам, действительный идентификатор пользователя которых равен идентификатору текущего выполнения процесса, посылающего сигнал (см. п. 2.5.1).

Для завершения процесса по его собственной инициативе используется системный вызов

exit(status),

где status - это целое число, возвращаемое процессу-предку для его информирования о причинах завершения процесса-потомка (как описывалось выше, для получения информации о статусе завершившегося процесса-потомка в процессе-предке используется системный вызов wait). Системный вызов называется exit (т.е. "выход", поскольку считается, что любой пользовательский процесс запускается ядром системы (собственно, так оно и есть), и завершение пользовательского процесса - это окончательный выход из него в ядро.

Системный вызов exit может задаваться явно в любой точке процесса, но может быть и неявным. В частности, при программировании на языке Си возврат из функции main приводит к выполнению неявно содержащегося в программе системного вызова exit с некоторым предопределенным статусом. Кроме того, как отмечалось выше, можно установить такую реакцию на поступающие в процесс сигналы, когда приход определенного сигнала будет интерпретироваться как неявный вызов exit. В этом случае в качестве значения статуса указывается номер сигнала.

Возможности управления процессами, которые мы обсудили до этого момента, позволяют образовать новый процесс, являющийся полной копией процесса-предка (системный вызов fork); дожидаться завершения любого образованного таким образом процесса (системный вызов wait); порождать сигналы и реагировать на них (системные вызовы kill и signal); завершать процесс по его собственной инициативе (системный вызов exit). Однако пока остается непонятным, каким образом можно выполнить в образованном процессе произвольную программу. Понятно, что в принципе этого можно было бы добиться с помощью системного вызова fork, если образ памяти процесса-предка заранее построен так, что содержит все потенциально требуемые программы. Но, конечно, этот способ не является рациональным (хотя бы потому, что заведомо приводит к перерасходу памяти).

Для выполнения произвольной программы в текущем процессе используются системные вызовы семейства exec. Разные варианты exec слегка различаются способом задания параметров. Здесь мы не будем вдаваться в детали (за ними лучше обращаться к документации по конкретной реализации). Рассмотрим некоторый обобщенный случай системного вызова

exec(filename, argv, argc, envp)

Вот что происходит при выполнении этого системного вызова. Берется файл с именем filename (может быть указано полное или сокращенное имя файла). Этот файл должен быть выполняемым файлом, т.е. представлять собой законченный образ виртуальной памяти. Если это на самом деле так, то ядро ОС UNIX производит реорганизацию виртуальной памяти процесса, обратившегося к системному вызову exec, уничтожая в нем старые сегменты и образуя новые сегменты, в которые загружаются соответствующие разделы файла filename. После этого во вновь образованном пользовательском контексте вызывается функция main, которой, как и полагается, передаются параметры argv и argc, т.е. некоторый набор текстовых строк, заданных в качестве параметра системного вызова exec. Через параметр envp обновленный процесс может обращаться к переменным своего окружения.

Следует заметить, что при выполнении системного вызова exec не образуется новый процесс, а лишь меняется содержимое виртуальной памяти существующего процесса. Другими словами, меняется только пользовательский контекст процесса.

Полезные возможности ОС UNIX для общения родственных или независимо образованных процессов рассматриваются ниже в разделе 3.4.

Понятие нити (threads)

Понятие "легковесного процесса" (light-weight process), или, как принято называть его в современных вариантах ОС UNIX, "thread" (нить, поток управления) давно известно в области операционных систем. Интуитивно понятно, что концепции виртуальной памяти и потока команд, выполняющегося в этой виртуальной памяти, в принципе, ортогональны. Ни из чего не следует, что одной виртуальной памяти должен соответствовать один и только один поток управления. Поэтому, например, в ОС Multics (раздел 1.1) допускалось (и являлось принятой практикой) иметь произвольное количество процессов, выполняемых в общей (разделяемой) виртуальной памяти.

Понятно, что если несколько процессов совместно пользуются некоторыми ресурсами, то при доступе к этим ресурсам они должны синхронизоваться (например, с использованием семафоров, см. п. 3.4.2). Многолетний опыт программирования с использованием явных примитивов синхронизации показал, что этот стиль "параллельного" программирования порождает серьезные проблемы при написании, отладке и сопровождении программ (наиболее трудно обнаруживаемые ошибки в программах обычно связаны с синхронизацией). Это явилось одной из причин того, что в традиционных вариантах ОС UNIX понятие процесса жестко связывалось с понятием отдельной и недоступной для других процессов виртуальной памяти. Каждый процесс был защищен ядром операционной системы от неконтролируемого вмешательства других процессов. Многие годы авторы ОС UNIX считали это одним из основных достоинств системы (впрочем, это мнение существует и сегодня).

Однако, связывание процесса с виртуальной памятью порождает, по крайней мере, две проблемы. Первая проблема связана с так называемыми системами реального времени. Такие системы, как правило, предназначены для одновременного управления несколькими внешними объектами и наиболее естественно представляются в виде совокупности "параллельно" (или "квази-параллельно") выполняемых потоков команд (т.е. взаимодействующих процессов). Однако, если с каждым процессом связана отдельная виртуальная память, то смена контекста процессора (т.е. его переключение с выполнения одного процесса на выполнение другого процесса) является относительно дорогостоящей операцией. Поэтому традиционный подход ОС UNIX препятствовал использованию системы в приложениях реального времени.

Второй (и может быть более существенной) проблемой явилось появление так называемых симметричных мультипроцессорных компьютерных архитектур (SMP - Symmetric Multiprocessor Architectures). В таких компьютерах физически присутствуют несколько процессоров, которые имеют одинаковые по скорости возможности доступа к совместно используемой основной памяти. Появление подобных машин на мировом рынке, естественно, поставило проблему их эффективного использования. Понятно, что при применении традиционного подхода ОС UNIX к организации процессов от наличия общей памяти не очень много толка (хотя при наличии возможностей разделяемой памяти (см. п. 3.4.1) об этом можно спорить). К моменту появления SMP выяснилось, что технология программирования все еще не может предложить эффективного и безопасного способа реального параллельного программирования. Поэтому пришлось вернуться к явному параллельному программированию с использованием параллельных процессов в общей виртуальной (а тем самым, и основной) памяти с явной синхронизацией.

Что же понимается под "нитью" (thread)? Это независимый поток управления, выполняемый в контексте некоторого процесса. Фактически, понятие контекста процесса, которое мы обсуждали в п. 3.1.1, изменяется следующим образом. Все, что не относится к потоку управления (виртуальная память, дескрипторы открытых файлов и т.д.), остается в общем контексте процесса. Вещи, которые характерны для потока управления (регистровый контекст, стеки разного уровня и т.д.), переходят из контекста процесса в контекст нити. Общая картина показана на рисунке 3.4.

Рис. 3.4. Соотношение контекста процесса и контекстов нитей

Как видно из этого рисунка, все нити процесса выполняются в его контексте, но каждая нить имеет свой собственный контекст. Контекст нити, как и контекст процесса, состоит из пользовательской и ядерной составляющих. Пользовательская составляющая контекста нити включает индивидуальный стек нити. Поскольку нити одного процесса выполняются в общей виртуальной памяти (все нити процесса имеют равные права доступа к любым частям виртуальной памяти процесса), стек (сегмент стека) любой нити процесса в принципе не защищен от произвольного (например, по причине ошибки) доступа со стороны других нитей. Ядерная составляющая контекста нити включает ее регистровый контекст (в частности, содержимое регистра счетчика команд) и динамически создаваемые ядерные стеки.

Страницы: 1, 2, 3, 4, 5, 6


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.