рефераты скачать

МЕНЮ


Єдина теорія полів і взаємодій


lPl = (G /з3)1/2 = 1.6161·10-33 см.


Величина


mPl = ( з/G)1/2 2.17665·10-5 г


зветься маси Планка.


tPl = (G /з5)1/2 = 5.29072·10-44 с.


Умови для об'єднання взаємодій могли існувати на самому початку утворення Вселеної, відразу після Великого вибуху. Реліктами епохи Великого вибуху є мікрохвильове випромінювання, що відповідає температурі 2.7 K, і, можливо, монополі Дирака - гіпотетичні магнітні заряди.

При об'єднанні всіх взаємодій, що, як передбачається відбувається при 1019 ГеВ, бозони й фермиони поєднуються в один мультиплет. У теорії передбачається, що до спостережуваних часток додаються суперпартнери, спини яких відрізняються на +1/2 або -1/2. Наприклад, до електрона додається суперпартнер зі спином 0.

У цих теоріях фермиони мають суперпартнерів, які повинні бути бозонами, а бозони - суперпартнерів, які повинні бути фермионами. У суперсиметричних теоріях є існування операторів, які переводять бозони |b> у фермиони |f>


|b> = |f>


Сполучені оператори перетворюють фермиони в бозони. Оператор  залишає незмінними всі квантові числа частки, за винятком спина. На пошук суперсиметричних партнерів спрямований цілий ряд експериментів на діючих і споруджуваних колайдерах.

*Зі співвідношення невизначеності треба, що якщо невизначеність в енергії більше подвоєної маси електрона, то може виникнути віртуальна електрон-позитронна пара, що буде існувати протягом часу t = /2mec2. Віртуальні електрон-позитронні пари відіграють істотну роль у структурі електрона. Електрон оточений хмарою віртуальних електрон-позитронних пар, причому позитивні заряди розташовуються ближче до електрона (поляризація вакууму). Такий "голий" електрон, оточений хмарою вакуумної поляризації називають фізичним електроном. На більших відстанях ефекти поляризації вакууму не помітні. Характерні розміри, у яких проявляються ефекти поляризації вакууму порядку комптоновської довжини хвилі електрона ~10-11 див. Закон Кулона перестає виконуватися, якщо електрони зближаються на відстань менше 10-11 див. Сили взаємодії між електронами виявляються трохи більше, ніж треба із закону Кулона. Експериментальні докази ефекту поляризації вакууму були отримані в результаті порівняння прецизійних вимірів енергій рівнів атома водню (Лемб)і магнітного моменту електрона (Каш) з розрахунками в рамках квантової електродинаміки (КЕД), які враховують віртуальні процеси.

**На малих відстанях кварки поводяться як квазисвободні частки. Зі збільшенням відстані між кварками сила взаємодії між ними росте й одиночний кварк не може вилетіти з адрону (асимтотическая воля). Асимптотична воля проявляється на відстанях <10-13 див.

Залежність сили взаємодії кварків від відстані між ними дозволяє відповістити на запитання про ядерні сили, тобто силах, які зв'язують нуклони в атомному ядрі. Є деяка аналогія з атомом. Атом нейтральний. Коли атоми перебувають на більших відстанях (>10-8 див) друг від друга, вони не взаємодіють. Але коли вони зближаються на відстані порівнянні з їхніми розмірами, між їхніми електронними оболонками виникають сили відштовхування. Це причина того, чому звичайна речовина досить важко стиснути. Кінцівка розмірів атомів і розподіл у них електричного заряду приводить до сил Ван-Дер-Ваальса.

Адрони є колірними синглетами. Сильна взаємодія відбувається тільки між кварками й глюонами. Тому, коли два адрони зближаються на відстань порівнянне з їхніми розмірами (~10-13 див), між ними починають діяти сили аналогічні силам Ван-Дер-Ваальса. Зі збільшенням відстані взаємодія між нуклонами швидко зменшується. Т. е. ядерні сили не є елементарними, а настільки ж вторинні стосовно сильної взаємодії, як і сили Ван-Дер_Ваальса стосовно електромагнітної взаємодії.

Експериментально давно була встановлена подоба електромагнітної й слабкої взаємодій у тому розумінні, що обоє вони можуть бути зрозумілі в рамках теорії з векторними частками як кванти поля - фотоном і слабкими проміжними бозонами. Відповідно, і струми часток мають векторний характер для електромагнітного й векторний і аксиально-векторний - для слабкого взаємодій (у слабких взаємодіях порушується парність). Електромагнітний струм для електронів:


Кваркові електромагнітні струми мають, зрозуміло, аналогічний вид:



Розходження зв'язане тільки з розходженнями в електричних зарядах. У той же час слабкі струми, пов'язані з розпадами часток, заряджені. Так, розпад мюона, містить добуток двох заряджених струмів:


.


Значок L означає, що з 4-спінори виділений стан за допомогою матриці (1 – г5).



де GF 10-5Mp2 - знаменита константа Ферми. У теорії з обміном слабким проміжним бозоном первинним є лагранжиан взаємодії виду




який, до речі сказати, описує розпад W-Бозона по 3 лептонним каналам (сюди ще доданий заряджений струм тау-лептона і його нейтрино), причому


(h.c. - оператор ермитового сполучення, визначається як a+ = a*T, де * - комплексне сполучення, T - транспонування. Згрупуємо тепер лептони по левоспиральним слабким ізодублетам оскільки саме в таких комбінаціях вони беруть участь у слабких взаємодіях.



Правоспіральні лептони в рамках моделі Вайнберга-Салама в заряджених слабких переходах не беруть участь і по визначенню є слабкими ізосинглетами. Порівнюючи тепер слабкі левоспіральні заряджені струми із сильними струмами в співвідношенні бачимо, що розумно ввести поняття слабкого ізоспина, при цьому з'явиться й нейтральний струм виду пов'язаний з нейтральним бозоном W3.



де (м) і (ф) - нейтральні струми дублетів ( м-м-,нм) і ( ф-ф-,нф) виходять очевидним перетворенням з першого члена (нейтрального струму дублета (нe,e-)). Оскільки нейтральний слабкий струм - лінійна комбінація векторного й аксиально-векторного струмів, виникає спокуса включити в таку теоретичну модель і електромагнітну взаємодію. Але ми не можемо прямо додати до нейтрального слабкого струму електромагнітний струм, оскільки він не володіє слабким ізоспином. Зате можна додати ще один струм, взаємодіючий зі слабким векторним нейтральним бозоном Yм, приписавши останньому властивості слабкого ізосинглета. Лагранжиан, що описує взаємодія нейтральних слабких струмів з бозонами W3м,Y, запишеться у вигляді (обмежимося сектором лептонів e, e-)


Від двох бозоних полів W3м треба перейти до двох іншим бозоним полям , , причому у зв'язку лептонів з полем уже закладений правильний електромагнітний струм. За змістом перетворення повинне бути ортогональним, і давайте виберемо його у вигляді


 


Підставляючи ці вираження у формулу для струмів, одержимо в лівій частині рівності для електромагнітного струму вираження



звідки a = -1/2, b = -1/2 , c = 1,



Тоді для нейтрального струму одержуємо



Уведемо позначення

 


Тепер нейтральні векторні поля зв'язані між собою формулами




При цьому e = gWsinи. Остаточно слабкий нейтральний струм у секторі лептонів запишеться у вигляді



Вимірюючи на досвіді співвідношення між внесками векторних і аксіально-векторних струмів у процесах, що йдуть через нейтральні слабкі струми, наприклад, у процесі пружного нейтрино на електронах нм + е-е- → нм + е-е-,



або в процесі глубоко-неупругого розсіювання нейтрино на нуклоні нм + N → нм + X де X - адрони в кінцевому стані,



можна визначити експериментальне значення кута Вайнберга: sin2 W 0.230+0.003. Електромагнітний струм у секторі лептонів ee- має правильний вигляд



Отже, слабка й електромагнітна взаємодії об'єднані в єдине електрослабку взаємодію в досить простої моделі для лептонів ee-. Вона негайно узагальнюється на весь лептонний і кварковий сектори. Перейти від феноменологичної моделі до теорії електрослабких взаємодій виявляється можливим у рамках теорії каліброваних полів.

У фізиці елементарних часток електрослабка взаємодія є загальним описом двох із чотирьох фундаментальних взаємодій: слабкої взаємодії й електромагнітної взаємодії. Хоча ці дві взаємодії дуже різняться на звичайних низьких енергіях, у теорії вони представляються як два різних прояви однієї взаємодії. При енергіях, вище енергії об'єднання (порядку 102 ГеВ), вони з'єднуються в єдину електрослабку взаємодію.

Теорія електрослабої взаємодії являє собою створену наприкінці 60-х років 20-го століття С. Вайнбергом, Ш. Глешоу, А. Саламом єдину (об'єднану) теорію слабкої й електромагнітної взаємодій кварків і лептонів, здійснюваних за допомогою обміну чотирма частками - безмасовими фотонами (електромагнітна взаємодія) і важкими проміжними векторними бозонами (слабка взаємодія).

Математично об'єднання здійснюється за допомогою каліброваної групи SU(2) × U(1). Відповідні калібровані бозони - фотон (електромагнітна взаємодія) і W і Z бозони (слабка взаємодія). У Стандартній моделі калібровані бозони слабкої взаємодії одержують масу через спонтанне порушення електрослабкої симетрії від SU(2) × U(1)Y до U(1)em, викликаного механізмом Хиггса . Нижні індекси використовуються, щоб показати, що існують різні варіанти U(1); генератор U(1)em дається вираженням Q = Y/2 + I3, де Y - генератор U(1)Y (названий гіперзаряд), а I3 - один з генераторів SU(2) (компонент ізоспина). Розходження між електромагнетизмом і слабкою взаємодією з'являється внаслідок (нетривіальної) лінійної комбінації Y і I3, що зникає для бозона Хиггса (цей власний стан як Y, так і I3, так що можна взяти коефіцієнти −I3 і Y): U(1)em визначається як група, генерируєма саме цією лінійною комбінацією й не піддається спонтанному порушенню симетрії, оскільки не взаємодіє з бозоном Хиггса.

За внесок в об'єднання слабкої й електромагнітної взаємодій елементарних часток Шелдону Глешоу, Стивену Вайнбергу й Абдусу Саламу була присуджена Нобелівська премія по фізиці в 1979. Існування електрослабких взаємодій було експериментально встановлене у дві стадії: спочатку були відкриті нейтральні струми в спільному експерименті Гаргамелла по розсіюванню нейтрино в 1973 р., а потім спільні експерименти UA1 і UA2 в 1983 р. довели існування W і Z каліброваних бозонів за допомогою протон-антипротонних зіткнень на прискорювачі SPS (Super Proton Synchrotron, протонний суперсинхротрон).


3. «ТЕОРІЯ ВСЬОГО»


Теорія всього(англ. Theory of everything, TOE) - гіпотетична об'єднана фізико-математична теорія, що описує всієї відомої фундаментальної взаємодії. Спочатку даний термін використовувався в іронічному ключі для позначення різноманітних узагальнених теорій. Згодом термін закріпився в квантової фізики для позначення теорії, яка б об'єднала всі чотири фундаментальні взаємодії в природі. У науковій літературі замість терміна «теорія всього» використовується термін «єдина теорія поля», проте варто мати на увазі, що теорія всього може бути побудована й без використання полів, незважаючи на те, що науковий статус таких теорій може бути спірним.

Протягом двадцятого століття була запропонована безліч «теорій усього», але жодна з них не змогла пройти експериментальну перевірку, або існують значні утруднення в організації експериментальної перевірки для деяких з кандидатів. Основна проблема побудови наукової «теорії всього» полягає в тому, що квантова механіка й загальна теорія відносності (ВІД) мають різні області застосування. Квантова механіка в основному використовується для опису мікросвіту, а загальна теорія відносності застосовна до макросвіту. СТВ (Спеціальна теорія відносності) описує явища при більших швидкостях, а ВІД є узагальненням ньютоновської теорії гравітації, що поєднує її зі СТО й поширює на випадок більших відстаней і більших мас. Безпосереднє сполучення квантової механіки й спеціальної теорії відносності в єдиному формалізмі (квантової релятивістської теорії поля) приводить до проблеми - відсутності кінцевих результатів для величин, що перевіряються експериментально. Для рішення цієї проблеми використовується ідея перенормировки величин. Для деяких моделей механізм перенормировок дозволяє побудувати дуже добре працюючі теорії, але додавання гравітації (тобто включення в теорію ВІД як граничного випадку для малих полів і більших відстаней) приводить до розходження, які забрати поки не вдається. Хоча із цього зовсім не треба, що така теорія не може бути побудована.

Після побудови наприкінці XIX століття електродинаміки, що об'єднала на основі рівнянь Максвелла в єдиній теоретичній схемі явища електрики, магнетизму й оптики, у фізику виникла ідея пояснення на основі електромагнетизму всіх відомих фізичних явищ. Однак створення загальної теорії відносності привело фізиків до думки, що для опису на єдиній основі всіх явищ необхідне об'єднання теорій електромагнетизму й гравітації.

Перші варіанти єдиних теорій поля були створені Давидом Гильбертом і Германом Вейлем. Надалі велику увагу «теорії всього» приділив Альберт Ейнштейн. Він присвятив спробам її створення більшу частину свого життя. Гильберт, Вейль і, надалі, Ейнштейн думали, що досить об'єднати загальну теорію відносності й електромагнетизм, до того ж спочатку не малося на увазі, що вони повинні бути квантовими, тому що сама квантова механіка ще не була досить розвитий. Значною мірою, якщо не повністю, мінімальна програма - об'єднання ВІД і електродинаміки була вирішена в рамках теорії Калуци - Клейна (можливо, і ще деяких теорій), але майже вже вчасно її створення стало актуальним включення в теорію інших полів і пророкування існування багатьох часток, що було не зовсім тривіальним, а надалі прояснилися й нові труднощі, а квантовий варіант теорії Калуци-Клейна хоч і був мислимий, однак квантування натрапляло на труднощі конкретної розробки, як і квантування самої загальної теорії відносності окремо.

Сучасна фізика жадає від «теорії всього» об'єднання чотирьох відомих у цей час фундаментальних взаємодій:

гравітаційна взаємодія,

електромагнітна взаємодія,

сильна ядерна взаємодія,

слабка ядерна взаємодія.

Крім того, вона повинна пояснювати існування всіх елементарних часток. Першим кроком на шляху до цього стало об'єднання електромагнітної й слабкої взаємодій у теорії електрослабкої взаємодії, створеної в 1967 році Стивеном Вайнбергом, Шелдоном Глешоу й Абдусом Саламом. В 1973 році була запропонована теорія сильної взаємодії. Після чого з'явилося кілька варіантів теорій Великого об'єднання (найбільш відома з них - теорія Пати - Салама, 1974 рік), у рамках яких удалося об'єднати всі типи взаємодій, крім гравітаційного. Правда, жодна з теорій Великого об'єднання поки не знайшла підтвердження, а деякі вже спростовані експериментально на основі даних по відсутності розпаду протона. Відсутньою ланкою в «теорії всього» залишається підтвердження якої-небудь із теорій Великого об'єднання й побудова квантової теорії гравітації на основі квантової механіки й загальної теорії відносності.

У цей час основними кандидатами в якості «теорії всього» є теорія струн, петельна теорія й теорія Калуци - Клейна. Про останню докладніше. На початку двадцятого століття з'явилися припущення, що Всесвіт має більше вимірів, чим спостережувані три просторових і одне тимчасово. Поштовхом до цього стала теорія Калуци - Клейна, що дозволяє побачити, що введення в загальну теорію відносності додаткового виміру приводить до одержання рівнянь Максвелла. Завдяки ідеям Калуци й Клейна стало можливим створення теорій. Використання додаткових вимірів підказало відповідь на питання про те, чому дія гравітації проявляється значно слабкіше, ніж інші види взаємодій. Загальноприйнята відповідь полягає в тому, що гравітація існує в додаткових вимірах, тому її вплив на спостережувані виміри слабшає.

Наприкінці 2007 року Гаррет Лиси запропонував «Винятково просту теорію всього», засновану на властивостях алгебр Чи. Незважаючи на виявлені недоліки теорії Лиси вона може відкрити новий напрямок робіт в області єдиних теорій поля.

Наприкінці 1990-х стало ясно, що загальною проблемою пропонованих варіантів «теорії всього» є те, що вони не строго визначають характеристики спостережуваного Всесвіту. Так, багато теорій квантової гравітації припускають існування всесвітів з довільним числом вимірів або довільним значенням космологічної постійної. Деякі фізики дотримуються думки, що насправді існує безліч вселених, але лише невелика їхня кількість населені, а виходить, фундаментальні константи всесвіту визначаються антропним принципом. Макс Тегмарк (англ.) довів цей принцип до логічного завершення, постулирующего, що «всі математично несуперечливі структури існують фізично». Це означає, що досить складні математичні структури можуть містити « структуру, щосамоусвідомлює,», що буде суб'єктивно сприймати себе «живучої в реальному світі».

В 2007 році американський учений Ентони Гаррет Лиси запропонував свій варіант Єдиної теорії. Теорія була опублікована в 31-сторінковому препринті. Як пише газета The Telegraph, вона викликала фурор у науковому світі. Дана теорія пояснює взаємозв'язок чотирьох фундаментальних сил у Всесвіті - сильної взаємодії, слабкої взаємодії, електромагнітної сили й сили притягання. Вона також поєднує дві глобальні теорії - квантову механіку й загальну теорію відносності. Рішення, знайдене Лиси, одні вчені називають «винятково простим» і «гарним», а інші впевнені, що теоретик помилився. Якщо ж він не помилився, то вченому вдалося виконати науковий заповіт Ейнштейна, уважають його колеги. Найважливіше - теорія пророкує існування ще 20-ти елементарних часток, поки невідомих науці.

Велике об'єднання – об'єднання при надвисоких енергіях трьох фундаментальних взаємодій – сильного, електромагнітного й слабкого. Передумовою до об'єднання трьох згаданих взаємодій є те, що сили (інтенсивності) цих взаємодій, що кардинально різняться при звичайних (низьких) енергіях, з ростом енергії й, відповідно, зменшенням відстані між частками, зближаються й по оцінках сходяться при енергії 1015–1016 ГеВ ( 10-29 див), називаною крапкою Великого об'єднання.

У міру росту енергії (починаючи від найнижчих) сильна, електромагнітна й слабка взаємодії зливаються в єдине у два етапи. При енергії 102 ГеВ (відстані 10-16 див) електромагнітна взаємодія зливається зі слабким в електрослбке. Утворення електрослабкої взаємодії є встановленим фактом і його теорією створена (електрослабка модель). У крапці Великого об'єднання електрослабка взаємодія зливається із сильним. Це злиття є гіпотезою. Переносниками сил Великого об'єднання вважаються гіпотетичні бозони X і Y, що мають величезні маси 1015 – 1016 ГеВ/з2.

Незважаючи на те, що неможливо штучно створити умови для Великого об'єднання через фантастичні енергії, необхідних для цього, існує ряд якісно нових ефектів, що пророкуються цим об'єднанням, які можна перевірити в лабораторних умовах. Так теорії Великого об'єднання (ТВО) пророкують розпад протона на позитрон і нейтральну півонію. У цьому розпаді не зберігається ні баріонне, ні лептонне квантове число (у всіх процесах, що спостерігалися, ці числа зберігалися), причому час такого розпаду в найпростіших ТВО близько 1030 років. Такі розпади не виявлені й нижня границя часу такого розпаду 1032 років.

Умови для Великого об'єднання могли існувати у Всесвіті в короткий період відразу після Великого вибуху, тобто близько 13-14 млрд років тому, коли її вік становив 10–43-10–36 с.

Ще більш дивні частки пророкує теорія«великого об'єднання», у якій поле поєднується із сильним, ядерним. Ця теорія-подальший розвиток ідей Янга й Миллса, що випливає крок у побудові єдиної теорії поля. Хоча теорія«великого об'єднання»ще досить невизначена, у неї багато різних варіантів і погано вивчених можливостей, пророкування цунамі-монополів виходить майже в будь-якому її варіанті. Заглянути в цю саму область, що інтригує, нашої історії, аж до фантастично малих величин порядку 10~35 секунд, дозволяє тепер теорія«великого об'єднання». Це був мир первозданної плазми, де ще не існувало елементарних часток, а були тільки їхнього тридцятилітні частини-первинні«кубики» - кварки і єднальне їхнє поле сильної взаємодії. Деякі часточки, що перебували в цьому вогненному сиропі, можливо, несли магнітний заряд. Втім, який це був заряд, сказати важко. Температура була ще так велика, що в перші миті після свого народження розпечений мир залишався зовсім симетричним, будь-які його властивості проявлялися з рівною ймовірністю. Розщеплення єдиної симетричної взаємодії на електромагнітне, слабке, сильне-на ті види взаємодій, які діють у сучасному світі, - відбулося пізніше, приблизно через 10~14-10~13 секунд після початку розширення. Розрахунки показують, що від тих давніх часів нам у спадщину повинне було залишитися досить багато важких монополів. Спочатку навіть виходило, що монополів у Всесвіті повинне бути стільки ж,«скільки протонів. Потім, при більше детальному розгляді реакцій у первинній вогненній кулі, масу магнітної речовини довелося зменшити, але однаково вона дуже велика-на багато порядків більш того, що треба з аналізу експериментальних даних.


4. МРІЯ ЕЙНШТЕЙНА


Альберт Ейнштейн умер так і не здійснивши свою мрію - побудувати єдину теорію, що описує Всесвіт у цілому. Останні десятиліття життя він присвятив пошукам такої теорії, що пояснювала б усе - від елементарних часток і їхніх взаємодій до глобальної структури Всесвіту. Незважаючи на величезні зусилля, Ейнштейна осягла невдача, тому що для рішення цього завдання ще не прийшов час. Тоді ще практично нічого не було відомо ні про чорні й білі діри, ні про сингулярностях, Великому вибуху й ранньому Всесвіті, ні про кварки, калібровану інваріантність, слабких і сильних взаємодіях. Тепер ясно, що всі ці явища мають відношення до єдиної теорії, що така теорія повинна осягнути й пояснити їх. У якімсь відношенні сьогодні наше завдання набагато складніше, чим ті, котру поставив перед собою Ейнштейн. Але вчені - завзяті люди, і зараз їм удалося підійти майже впритул до бажаної й вабливої мети, зробити важливі відкриття.

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.