рефераты скачать

МЕНЮ


Вимірювальний механізм і схема електродинамічних фазометрів

Це дозволяє рекомендувати для вимірів на підвищених частотах трехобмоточные фазометри.

Дослідження впливу зовнішніх магнітних полів на показання електродинамічного фазометра показують необхідність застосування астатической системи або магнітне екранування вимірювального механізму. Необхідна також надійне екранування фазосувної котушки, індуктивності, що включає послідовно з однієї з рухливих котушок фазометра. Котушка індуктивності, виконана у вигляді дроселя з П-подібним сердечником, що має повітряні зазори, і із симетричним розташуванням двох однакових котушок, виявляється досить захищеної від впливу зовнішніх магнітних полів.

У роботах А. Д. Нестеренко, В. Л. Уласика і Е. С. Поліщука розглянутий вплив вищих гармонік і кривих струма і напруги на показанн електродинамічних фазометрах, причому різниці між показами приладу при синусоїдальних струмах і напругах, і при наявності у кривих струма і напруги вищих гармонік вважається погрішність другої групи.

Із цим не можна погодитися, тому що з появою вищих гармонік прилад вимірює не кут зрушення фаз φ, а коефіцієнт потужності в колі з несинусоїдальними струмом і напругою. Отже, для визначення погрішності його показання потрібно порівнювати не з показаннями приладу при синусоїдальних струмі й напрузі, а з показаннями іншого, зразкового приладу, що точно вимірює коефіцієнт потужності в колі з гармоніками.


ВІТЧИЗНЯНІ ЕЛЕКТРОДИНАМІЧНІ ФАЗОМЕТРИ


Електродинамічні фазометри, що випускають вітчизняною промисловістю, за точністю діляться на лабораторні переносні, технічні переносні й щитові стаціонарні прилади, а за схемах включення - на однофазні й трифазні.

Переносний лабораторний однофазний трехобмоточный фазометр ЭЛФ являє собою чотириквадрантний прилад, призначений для виміру cos φ і кута зрушення фаз у колах змінного струму частотою 50 гц. Клас точності приладу 1,5, межі виміру 0—90—180—270—360 електричних градусів, а по cos φ — 1—0— 1. Шкала приладу — дворядна, із градуваням в електричних градусах від 0 до 90 і зі значеннями від 1,0 до 0. Різновиду цього приладу ЭЛФ-1, ЭЛФ-2 й ЭЛФ-4 призначені для вимірів cos φ на частотах відповідно 500, 1 000, 400 й 2 400 гц.

Переносний технічний трифазний фазометр типу Д-510 призначений для вимірів у трифазних ланцюгах частотою 50 гц при симетрії струмів і напруг. Клас точності фазометра 1,0. Випускається 12 модифікацій приладу з різними межами виміру за cos φ і струму.

Щитовий однофазний фазометр типу ЭТФ класу 2,5 призначений для виміру cos φ у колах змінного струму частотою від 1 000 до 8 000 гц. Фазометри типу ЭТФ виготовляються на одну з номінальних частот 1 000, 2 500 й 8 000 гц і призначені для вімкнення в коло як безпосередньо, так і через трансформатори струму й напруги. Межі виміру за cos φ 0.5інд — 1— 0,5емк. Ці фазометри застосовуються в основному в електроустановках підвищеної частоти, наприклад на щитах індукційних печей.


ФЕРРОДИНАМІЧНІ ФАЗОМЕТРИ


На рис. 3 представлена конструкція магнитопровода, принципова схема й векторні діаграми (для індуктивного і ємнісного характеру навантаження) однофазного ферродннамического фазометра. Основою приладу служить двухмоментний логометр ферродинамічної системи. Обертаючий елемент такого логометра має магнитопровід із двома незалежними повітряними зазорами δ1 й δ2 , з яких хоча б один є функцією кута повороту рухливої частини приладу.

З'єднані послідовно секції I й II котушки, по якій протікає струм навантаження І, створюють у зазорах δ1 й δ2 магнітні поля з індукціями В1 і В2 , причому з достатнім ступенем точності можна вважати:



(19)


де k — розмірний коефіцієнт;

ω1 й ω2 — числа витків секцій I й II (надалі будемо вважати ω1 = ω2 = ω).

Рухома частина приладу складається із двох однакових котушок 1 й 2, жорстко укріплених на одній осі під кутом 180° один до одного. Котушки переміщуються


Рис. 3. Однофазний ферродинамічний фазометр, а— принципова схема; б — векторні діаграми.


в зазорах δ1 й δ2. Струми ІU1 й IU2 пропорційні прикладеній напрузі U і зрушені щодо нього по фазі на певні кути ψ1 й ψ2 , що залежать від характеру елементів z1 й z2 , включених у коло кожної котушки.

Умова рівноваги рухливої частини приладу при рівності моментів, що діють на котушки 1 й 2, виражається в такий спосіб:


Де B1 й B2 — індукції в зазорах δ1 й δ2;

ωu1 й ωu2 — числа витків;

su1 й su2 — площі котушок 1 й 2;

φ - вимірюваний кут зрушення фаз між U й I (знак φ, як звичайно, визначається характером навантаження).

Припустимо

 (20)

одержуємо рівняння


(21)



є рівнянням характеристики шкали однофазного ферродинамічного фазометра.

Знайдемо співвідношення, що зв'язують між собою величини зазорів, значення кутів ψ1 й ψ2 межі виміру приладу [Л. 29].

З формули (21) треба, що



(22)


Уведемо позначення:






- відношеня індукцій відповідно на початку шкали, в точці φ = 0 і наприкінці шкали.

Тоді



(23)


(24)


Позначаючи через φ і φк значення кута зрушення фаз на початку й наприкінці шкали, одержуємо:

(25)



(26)


З рівнянь (19) слідує, що параметри Рн , Р0 і Рк будучи відносинами індукцій, у той же час являють собою зворотні відносини зазорів з відповідними точках шкали. Вибір цих величин диктується конструктивними й технологічними міркуваннями й у значній мірі визначає конфігурацію зазорів.

У практиці побудови фазометрів у більшості випадків межі виміри задаються не довільно. У приладах із двосторонньою шкалою, як правило, |φн| = |φк| . Якщо при цьому вибрати значення Р0 = 1 у середині рівномірної шкали, то виходить фазометр для виміру фазових зрушень при ємнісному й індуктивному режимах навантаження, причому при зміні режиму навантаження в приладі не потрібно ніяких перемикань. У цьому випадку





( 27)


Фазометри із двосторонньою шкалою при одній і тій же геометричній довжині шкали мають в 2 рази меншу чутливість у порівнянні з фазометрами, що мають однобічну шкалу, тому часто воліють мати однобічну шкалу, користуючись перемикачем при переході від одного режиму навантаження до іншого. У цьому випадку доцільно зробити один зазор постійним, що не залежить від кута повороту рухливої частини, а величину іншого зазору в крайній точці шкали прирівняти величині першого.

Для такого фазометра (тому що φн = 0, φдо = φмакс), будемо мати:


(28)


При заданій межі виміру приладу й обраному значенні Рн або Рк рівняння (27) і (28) дають залежність, що зв'язує між собою кути ψ1 й ψ2. Однак для визначення кожного з кутів необхідно друга умова, у якості якого може бути використане рівняння (23):





з якого треба, що


ψ2 = ± 180±ψ1 (29)


Рис. 4. варіанти включення паралельного ланцюга ферродинамического фазометра.

Фазові співвідношення між векторами індукцій B1 й B2 і струмів I1 й I2 фазометрів з рівномірною однобічною шкалою, можуть бути зведені до чотирьох варіантів, представленим векторними діаграмами рис. 4. Той або інший варіант визначає знак відносини sin ψ2 ⁄ cos ψ1 у рівнянні (28). Очевидно, для мал. 4,а й б (- 90< ψ1<90 ; 90<ψ2 <180) це відношення має позитивний знак (cos ψ1>0 ; sin ψ2 >0), а для мал. 4,б и г (- 90< ψ1<90 ; 180<ψ2<270) — негативний (cos ψ1>0 ; sin ψ2 <0). Таким чином,




(30)


Вираження (29) і векторні діаграми показують, що для варіантів мал. 4,а й в sin ψ2 =sin ψ1, а для варіантів мал. 4, б і г sin ψ2 = – sin ψ1 т. е. у всіх випадках


(31)



Підставляючи (31) в (30), одержуємо:



(32)


У формулі (32) у чисельнику повинен бути обраний позитивний знак, у противному випадку Рк = 1, тобто рівняння (21) не дотримується. Звідси ясно, що для побудови фазометра можуть бути обрані варіанти мал. 4,а або в.




(33)


Або


(34)


Маючи задану межу виміру φмакс і вибираючи з конструктивних міркувань величину Рк , можна по формулі (34) визначити значення ψ1 і по формулі (29) відповідне йому значення ψ2. Надалі будемо вважати, що Рк>1, тобто що зазор δ1 незмінний уздовж всієї шкали, а зазор δ2, рівний δ1 у точці φ= 0 (Рн = Р0 = 1 ), збільшується й стає максимальним у точі φ = φмакс .Тоді з рівняння (34) треба, що при індуктивному режимі навантаження (φмакс>0) кут ψ1 повинен бути позитивним, а при ємнісному (φмакс<0) — негативним.

При дотриманні цієї умови та сама магнітна система може бути використана для вимірів кута зрушення фаз як при індуктивному, так і при ємнісному режимах навантаження. Для цього в коло однієї рухливої котушки повинна бути включена котушка індуктивності, а в колі іншої — конденсатор. Зміна знака кута ψ1 (і, відповідно, кута ψ2) здійснюється взаємним перемиканням фазосдвигающих елементів z1 й z2 з кола однієї котушки в коло іншої. Якщо при цьому перемінити напрямок струму в нерухомій котушці на протилежне, то положення -рівноваги рухливої частини як і раніше залишається стійким, а основні розрахункові формули не змінюються.

Тому, не порушуючи спільності міркувань, можна надалі вважати φмакс>0, тобто




(35)


що відповідає варіанту мал. 4,а. Одержувані результати рівною мірою будуть справедливі й для фазометра, що вимірює негативні фазові зрушення φмакс<0

Знайдемо вираження для питомого моменту. Скориставшись рівнянням (21) і диференціюючи за α суму моментів, що діють на рухливу частину фазометра, одержимо:





або з обліком (35)





але








Оскільки






Звідси



(36)


Використовуючи вираження (19), (22) і (35), одержуємо:






З урахуванням рівномірності шкали (φ = αφмакс / αиакс) одержимо:





Таким чином,



(37)


ПОГРІШНОСТІ ФЕРРОДИНАМИЧЕСКОГО ФАЗОМЕТРА

Допустимо, що, крім моментів М1 і М2 , на рухливу частину фазометра впливає додатковий момент Мд , що викликає появу абсолютної основної погрішності приладу Δα. Якщо момент Мд значно менше кожного з моментів М1 і М2 , то для визначення основної погрішності можна скористатися формулою (17):





Якщо шкала приладу рівномірна, то





де Δφ - абсолютна основна погрішність фазометра в одиницях вимірюваної різниці фаз.


Отже



(38)


Розглядаючи вираження (38), дійдемо висновку, що для зменшення основної погрішності приладу при певнім значенні додаткового моменту Мд необхідно по можливості збільшити число амперів-витків послідовного й паралельного колу, зменшити зазор δ1 і вибрати кут ψ1 оптимальним.

Для визначення оптимального значення кута ψ1 позначимо:



 (39)


З вираження (38) треба, що погрішність стає найменшої, коли S досягає максимального значення. Оскільки величина S виявляється найменшої наприкінці шкали, досліджувати S на максимум треба при φ = φмакс .

Диференціюючи (39), знаходимо:





Прирівнюючи dS/dψ1 до нуля, одержуємо:




і після елементарних тригонометричних перетворень


(40)



Знаючи межу виміру φмакс , по формулах (40) і (35) можна знайти оптимальні значення кутів ψ1 й ψ2 відповідному мінімуму основної погрішності фазометра.

Співвідношення (40) справедливо тільки при φмакс≤45. При φмакс>45° рівність (34) порушується, і рухлива частина приладу в деяких ділянках шкали, буде перебувати в стані хиткої рівноваги. Тобто, при проектуванні фазометра з межею виміру φмакс>45° необхідно в першу чергу задовольнити вираження (34), по можливості наблизившись до виконання умови (40).

Спільне дослідження виражень (34) і (40) для φмакс>45° показує, що значення Рк доцільно вибирати можливо більшими.

Із числа додаткових погрішностей ферродинамічного фазометра найбільш істотними виявляються частотна й температурна.

Умови рівноваги рухливої частини фазометра при частоті ω згідно (21) і (35) можна записати у такий спосіб:



де r, L, С — активний опір, індуктивність й ємність ланцюгів рухливих котушок;

U — напруга в паралельному ланцюзі. Допустимо всі вхідні з рівняння (41) величини, крім частоти незмінні, одержуємо:



(42)


Відомо, що









Крім того,






Користуючись наведеними співвідношеннями, після не складних перетворень одержимо вираження для частотної погрішності при довільній частоті:


(43)


Як правило, фазометр працює при номінальній частоті ω0 , на яку він розрахований, і погрішність виникає при відхиленні робочої частоти від номінальної.

Тоді згідно (35)




і вираження для частотної погрішності здобуває вигляд:



 (44)


При дотриманні умови (34) і різних режимів навантаження погрішність βω залишається позитивної

і стає максимальної при φ = 0 :


(45)



З достатнім ступенем точності можна вважати, що температурна погрішність фазометра виникає за рахунок зміни активних опорів у колі рухливих котушок. Оскільки ω0L = 1⁄ω0C , а активні опори при нормальній температурі однакові, зміни модулів струмів у рухливих котушках будуть однаковими й не вплинуть на рівновагу рухливої частини.

Отже, умова рівноваги рухливої частини приладу при нормальній температурі може бути записане так:





де r0 — активний опір кола рухливої котушки;





x — реактивний опір того ж кола.

Для визначення температурної погрішності скористаємося вираженням



 (46)


Оскільки



з рівняння (46) знаходимо:



або з обліком (22) і (35)


(47)


Активний опір кола рамки при будь-якій температурі




де α — температурний коефіцієнт опору; t° — збільшення температури.

Тоді dr⁄dto=r0α і з (47) одержуємо:






Якщо врахувати, що


(46)



ВІТЧИЗНЯНІ ФЕРРОДИНАМІЧНІ ФАЗОМЕТРИ

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.