рефераты скачать

МЕНЮ


Види теплогенераторів


Живий переріз газоходу

F = bh - n1 × l × d м2,                                            (17)


де n1 - число труб в ряду; l - довжина труб, м.

Решту величин беруть з відповідних номограм і раніше поданих співвідношень.

Після цього з рівняння (IV-13) визначають теплосприймання поверхні нагріву Qm, яке порівнюють з величиною Qб, одержаною з теплового балансу (IV-14). При розходженні до 2% розрахунок не уточнюється. При більшому розходженні треба задатись новим значенням J¢¢г. Ув'язати розрахунки можна методом послідовного наближення або, простіше, за допомогою графічної інтерполяції, задавшись двома значеннями: J¢¢г(J¢¢1 і J¢¢2).

Розрахункові значення шуканої температури газів J¢¢p, визначають (наближено, але з достатньою точністю) по проекції на вісь абсцис точки перетину прямих і Qб.



5. Допоміжне обладнання котельних установок. Водопідготовка

5.1 Тягодуттьове і живильне обладнання


Процес горіння палива можливий при безперервному підведенні в топку повітря і видалянні продуктів згоряння. Подавати повітря і видаляти димові гази можна або природною тягою димової труби (димаря), або примусово за допомогою вентиляторів і димососів. Природна тяга створюється димовою трубою внаслідок того, що густина газів, які в ній знаходяться, менша від густини атмосферного повітря. Її застосовують лише в невеликих установках, в яких температура відхідних газів висока, а опір котла невеликий (10-15 мм вод. ст.).

В установках середньої і великої видатності опір котлоагрегату становить 200¸300 мм. вод. ст., а температура відхідних газів - 115¸140° С. За таких умов димова труба не зможе створити потрібного розрідження і треба застосовувати штучну тягу.

Повітря, потрібне для горіння, подається вентилятором 2, що перемагає опір повітропідігрівника і пальників при камерному спалюванні або шару палива при шаровому спалюванні. Продукти згоряння відсмоктуються димососом 1 і видаляються в атмосферу крізь димову трубу на висоту, що визначається санітарними нормами.

У верхній частині топки підтримується лише невелике розрідження, що обчислюється кількома мм вод. ст. Таку схему називають зрівноваженою тягою.

Тягодуттьова установка може складатися з кількох вентиляторів і димососів. У димососах, на відміну від дуттьових вентиляторів, передбачається водяне охолодження підшипників, а іноді й вала, покриття кожуха всередині бронею і зносостійка конструкція ротора.

Для вибору вентиляторів і димососів визначають гідравлічні опори, що виникають під час руху повітря і газів в установці, враховуючи опір тертя, місцеві опори, запиленість газового потоку, можливі зовнішні забруднення поверхні нагріву.

Вибирають вентилятор або димосос виходячи з повного його напору h в н/м2 і годинної видатності Q в м3/год при номінальному навантаженні агрегату. Потужність на валу димососа або вентилятора визначається за формулою:


 квт,                                        (1)


де 1,1 - коефіцієнт запасу; h - к. к. д. димососа, який у сучасних конструкцій дорівнює 0,75¸0,85.

Витрата електроенергії на тягодуттьову установку становить 1,5¸3% від видатності котельного агрегату і залежить як від к. к. д. вентиляторів і димососів, так і від способу регулювання їх видатності при зміні навантаження котельного агрегату. Таке регулювання можна здійснювати за допомогою напрямних апаратів (лопаток), що закручують потік газів перед надходженням його на лопатки вентилятора, а також гідромуфтами і зміною числа обертів електродвигуна. Останнім часом набуває поширення регулювання шиберами язикового типу, встановленими на всмоктувальному патрубку вентилятора.

Воду в паровий котел подають поршневими і відцентровими насосами. Для безпечної експлуатації котлів потрібна висока надійність роботи живильного обладнання, в зв'язку з чим установлюються резервні живильні прилади.

Поршневі насоси мають високий к. к. д., надійні в роботі, придатні для дуже високих тисків. Проте при великій видатності вони стають громіздкими і тому застосовуються, головне, в невеликих котельних установках.

У котельних установках середньої і великої видатності застосовують відцентрові насоси з електричним або паротурбінним приводом. Вони компактні і придатні для будь-якого тиску і видатності.

Сучасні котли мають невеликий водяний об'єм. Щоб забезпечити їх безперервне живлення відповідно до навантаження котла, передбачається автоматичне живлення. У нас поширені двоімпульсні регулятори живлення (системи інж. Трубкіна та ін.). Кількість подаваної води регулюється живильним клапаном за первинним імпульсом від рівня води в барабані і за вторинним - від витрати пари.

5.2 Золовидалення і золовловлювання

У невеликих котельних установках при шаровому спалюванні палива застосовують вагонеткове або механічне золовидаляння (за допомогою скребкового транспортера).

У котельних установках середньої і великої видатності широко застосовують низьконапірне гідравлічне золовидаляння. Зола і шлак змиваються струминою води і з бункерів надходять у канал, по якому рухається вода, що виносить золу за межі котельної. Потім зола транспортується до золовідвалу в закритому трубопроводі. Суміш води, шлаку і золи перекачується або багерними насосами, або гідроапаратами системи інж. Москалькова.

Багерні насоси - це відцентрові насоси, призначені для роботи на дуже забрудненій воді. В їх конструкції передбачається можливість пропуску через них кусків шлаку розміром до 100 мм.

Гідроапарат інж. Москалькова обладнаний соплом з насадкою. В апарат подається вода під тиском 40-50 бар. Вона виходить з насадки з великою швидкістю і дробить та ежектує шлак.

Багерні насоси можуть перекачувати суміш води й золи на відстань до 1 км, напорні гідроапарати - до 2 км.

У відхідних димових газах міститься сірчистий ангідрид і багато леткої золи. Щоб знизити концентрацію пилу в атмосферному повітрі, димові гази очищають у золовловниках. Крім того, встановлюють високі димові труби (у великих установках 100-150 м) для розвіювання сірчастого ангідриду і леткої золи, залишеної після золовловників, на значну відстань. Золовловлювання провадиться у золовловниках різних типів: механічних, жалюзійного і циклонного типів (циклони, батарейні циклони), мокрих (скруберні, пруткові) і в електрофільтрах.

У жалюзійних золовловниках ВТІ запилений потік газів розподіляється на паралельні струмини, напрямок руху яких різко змінюється. При цьому вловлюються крупні фракції золи. Такі золовловники використовують для захисту димососів, а також: хвостових поверхонь нагріву від швидкого зносу.

Циклони виконуються у вигляді вертикальних циліндрів з конічним днищем. Запилений газ підводиться до циліндра тангенціальне і набуває обертового руху. Золові частинки під впливом відцентрової сили відкидаються до стінок і по них спускаються в нижню частину циклона, а очищений газ виходить у трубу, розміщену в верхній частині циклона по його осі. Міра вловлювання пилу в циклоні залежить від конструкції циклона і розмірів частинок пилу і становить в середньому 60¸70%.

К. к. д. циклона можна збільшити до 70¸80%, зменшивши його діаметр. Тому останнім часом установлюють батарейні циклони, що складаються з багатьох циклонів малого діаметра (200¸250 мм).

Мокрі відцентрові скрубери ВТІ належать до комбінованих систем золовловлювачів. Димові гази підводяться до скруберів тангенціальне через горизонтальний патрубок. Стінки скрубера, облицьовані керамічними плитками, зрошуються водою. Частинки золи, що відкидаються до стінок відцентровою силою, стікають разом з водяною плівкою вниз і видаляються в каналізацію. Коефіцієнт вловлювання золи в мокрих скруберах становить 85 - 88%.

Пруткові золовловники ВТІ (інж. Деркачова) відрізняються від мокрих скруберів тим, що на них установлені у вхідному патрубку решітки із зрошуваних водою прутків для кращої очистки газу.

В електрофільтрах пилові частинки, діставши негативний заряд, летять до позитивно зарядженого осаджувального електрода і осаджуються на ньому, видаляючись у золовий бункер під час періодичного струшування електрода. Міра вловлювання золи в електрофільтрах становить 95%.

При виборі типу золовловників беруть до уваги не тільки міру вловлювання золи, а й вартість і складність спорудження, металомісткість і витрату енергії. При достатньо високому к. к. д. найекономічніші за вартістю очистки 1 м3 газу мокрі відцентрова скрубери.

5.3 Водопідготовка

Щоб теплові електростанції працювали надійно й економічно, треба правильно організувати водний режим котельних агрегатів. Для цього слід запобігати утворенню відкладень на стінках поверхонь нагріву пароводяного тракту агрегату, їх корозії, добувати пару високої частоти.

Для живлення котельних агрегатів електростанцій застосовують турбінний конденсат. Проте частина цього конденсату на станціях втрачається, і ці втрати на великих конденсаційних електростанціях становлять 1¸3%, а на теплоелектроцентралях через неповертання конденсату з виробничих апаратів - до десятків процентів. Ці втрати поповнюють додатковою водою.

Природна вода містить механічні домішки, різні розчинені солі й гази, тому, потрапляючи в котел, розчинені речовини, що містяться у воді, утворюють накип і шлам, а розчинені корозоактивні гази (кисень і вуглекислий газ) викликають корозію стінок котлів.

До накипотвірних солей належить кремнекислота, сірчанокислі і вуглекислі солі кальцію і магнію. Сумарна концентрація у воді катіонів кальцію і магнію визначає її загальну жорсткість. Вона поділяється на карбонатну (тимчасову), зумовлену наявністю бікарбонатів кальцію і магнію, і некарбонатну, зумовлену наявністю в воді інших солей кальцію і магнію. Жорсткість виражають у міліграм-еквівалентах або в мікрограм-еквівалентах на літр (мг × екв/л або мкг × екв/л).

Накип відкладається у вигляді міцного шару на стінках поверхонь нагріву, а шлам - у вигляді дрібних завислих у воді частинок. У ряді випадків відбувається вторинне накипоутворення внаслідок прикипання шламу до поверхні нагріву. Із солей жорсткості найнеприємніші щодо накипоутворювання: силікат СаSіО3 і сульфат СаSO4 кальцію, що дають твердий і щільний накип.

Через відкладання накипу і прикіпання шламу на поверхнях нагріву знижується надійність і економічність роботи котельних установок, бо шлам і накип мають дуже низьку теплопровідність. Такі відкладення на стінках труб, що працюють у ділянці високих температур димових газів, можуть спричинити недопустиме перегрівання цих стінок, що супроводиться зниженням міцності металу, деформацією і розриванням труб. Внутрішнє забруднення поверхонь нагріву призводить до погіршання теплопередачі, підвищення температури відхідних газів і зниження к. к. д. котельного агрегату, створюючи великий додатковий термічний опір.

Чим вищий тиск вироблюваної пари, тим вищі вимоги до якості живильної води. Особливо високі вимоги ставлять до якості живильної води для прямотокових котлів надкритичних параметрів. З підвищенням тиску стає все важче дістати чисту пару, бо при переході до високих тисків пара забруднюється не тільки внаслідок виносу солей з краплями води, а й внаслідок здатності її розчиняти деякі домішки - кремнекислоту і сполучення натрію (хлористий натрій, гідроокис натрію тощо). Наявні в парі домішки утворюють відкладення в арматурі паропроводів, у клапанах і в проточній частині турбін. Це призводить до нещільності арматури, зниження економічності і потужності турбін.

Запобігти утворюванню накипу в паровому котлі можна, лише видаливши розчинені у воді солі або перевівши їх у легкорозчинні сполуки, що не випадають з розчину навіть при високій концентрації в ньому солей.

Мета обробки вихідної води - або пом'якшення, тобто зменшення вмісту в воді кальцієвих і магнієвих солей, що визначають її жорсткість, або знесолення води.

Застосовують такі способи пом'якшення води, зменшення її жорсткості: термічні, реагентні, іонного обміну, комбіновані.

Термічний спосіб пом'якшення води полягає в нагріванні води. При цьому розкладається бікарбонат кальцію і утворюється вуглекислий газ, вода і карбонат кальцію, що випадає в осад:

­

Ca (НСО3)2 ® СаСО3 + СО3 + H2O.

¯

Якщо у воді є бікарбонат магнію, то спочатку утворюється бікарбонат натрію, що дає при кип'ятінні осад малорозчинного гідроокису магнію. Глибокого пом'якшення даним способом досягти не можна і для енергетичних установок він не придатний.

Реагентні способи пом'якшення води, що називаються також методами осаджування накипоутворювачів, ґрунтуються на випаданні в осад карбонату кальцію і гідроокису магнію внаслідок дії багатьох реагентів, що добавляються в оброблювану воду. Як реагенти застосовують вапно, їдкий натр, соду як роздільно, так і комбіновано.

Нині як передочистку в поєднанні з методом іонного обміну застосовують вапнування, це дає можливість різко зменшити карбонатну жорсткість вихідної води, видалити розчинений у воді вуглекислий газ, а також магнієву жорсткість, зменшити сухий залишок води:

Са (НСО3)2 + Са (ОН)2 ® 2СаСО3 + 2Н2O;

¯

СО2 + Са (ОН)2 ® СаСО3 + Н2О;

¯

Мg (НСО3)2 + 2Са (ОН)3 ® Мg (ОН)2 + 2СаСО3 + 2Н2О.

¯           ¯

Раніше було дуже поширене содовапнування. Залишкова жорсткість води після зм'якшування цим способом ще велика. Через недостатнє зм'якшення води, громіздкість апаратури, велику вартість, необхідність витрачати дорогі і дефіцитні реактиви содовапнування останнім часом не застосовують.

Основним методом обробки води тепер є метод катіонного обміну. Завдяки своїй простоті, економічності, невеликим капітальним затратам і високій якості зм'якшеної води обробка води катіонітовим способом досить поширена. Речовини, які використовуються для обробки води цим способом, називаються катіонітами. Як катіоніт застосовують сульфовугілля, яке дістають у результаті обробки роздробленого кам'яного вугілля сірчаною кислотою.

Процес катіонування полягає в обміні катіонами, що містяться у воді, яка обробляється, i тих, що віддаються катіонітом. Катіоніт не розчиняється у воді, але при доторканні до неї витягує з неї катіони і віддає взамін катіони, що раніше входили до його складу. В катіоніт вводять один з таких обмінних катіонів - натрій, водень і амоній. Залежно від цього розрізняють натрій-катіонування, водень-катіонування, амоній-катіонування і комбіновані методи обробки катіонітами. Основний показник якості сульфовугілля - робоча місткість поглинання, в середньому вона становить 300 г. × екв/м3.

Технічний процес пом'якшення води катіонуванням дуже простий і полягає у фільтрації оброблюваної води крізь шар катіоніту, що знаходиться в фільтрі.

Найбільш поширеним є спосіб обробки води за схемою натрій-катіонування завдяки його простоті, дешевизні кухонної солі, яка застосовується для регенерації катіоніту, і глибокому зм'якшенню води. При Nа-катіонуванні у воді замість бікарбонатів Са і Мg утворюється бікарбонат натрію, а замість сульфатів і хлоридів Са і Мg - сірчастий і хлористий натрій, які не дають накипу:

Ca (HCO3) + 2NaK ® CaK2 + 2NaHCO3;

Mg (HCO3) + 2NaK ® MgK2 + 2NaHCO3;

CaCl2 + 2NaK ® CaK2 + 2NaCl;

CaSO4 + 2NaK ® CaK2 + Na2SO4.

В міру заміни катіонів натрію в катіоніті катіонами Са і Мg обмін стає менш інтенсивним, а потім припиняється, і катіонітовий фільтр перестає зм'якшувати воду.

Для відновлення властивостей катіоніту його регенерують пропускаючи крізь фільтр розчин кухонної солі

2NаСl + СаК2 ® 2NаК + СаСl2.

При великій карбонатній жорсткості вихідної води доцільна комбінована схема обробки з попереднім вапнуванням води. Недоліком Nа-катіонування є висока лужність і високий загальний солевміст зм'якшеної води.

При Н-катіонуванні солі кальцію і магнію видаляються, вода знесолюється і стає кислою, наприклад:

СаSO4 + 2НК ® СаK2 + Н2SO4;

СаСl2 + 2НК ® СаК2 + 2НСl.

Регенерують катіоніт розчином сірчаної кислоти. Цей спосіб застосовують, зокрема, як перший ступінь обробки води для установок надвисокого і надкритичного тиску за схемою глибокого хімічного знесолювання. Недоліки Н-катіонування: дорогі корозійностійке устаткування, трубопроводи і арматура, складність експлуатації.

У промислових котельних установках широко застосовується в поєднанні з натрій-катіонуванням амоній-катіонування.

Повністю хімічно знесолити воду можна в результаті Н-катіонування з наступним аніонуванням. Аніонування - це процес обміну аніонами між кислотами, що містяться у воді, і аніонітом - речовиною, що використовується для такої обробки. Аніоній здатний інтенсивно поглинати з води аніони, коли вони перебувають у воді у вигляді кислот. Тому перед аніонуванням провадиться Н-катіонування вихідної води.

Аніоніти поділяються на дві групи: малоосновні, що поглинають аніони тільки сильних кислот (SO42-, Сl-, NO3-), і сильноосновні, що поглинають аніони сильних і слабких кислот (НСО3-, HsiO3-).

Для першого ступеня аніонування в установках повного хімічного знесолювання застосовують дешеві малоосновні аніоніти, а для другого і третього ступенів аніонування - сильноосновні аніоніти.

Повністю видалити солі з води можна також термічним знесоленням - дистиляцією води. Апарати, що застосовуються для цього, називаються випарниками. Вони обігріваються парою, а живлять їх попередньо пом'якшеною водою. Термічне знесолення - найдорожчий спосіб обробки води.

Для уявлення про те, наскільки високі вимоги ставлять до знесоленої води для живлення прямотокових котлів, наведемо такі дані: солевміст води не повинен перевищувати 0,05 мг/л, жорсткість - 3 мкг/кг.

Розчинені у воді корозійно-агресивні гази - кисень і вуглекислий газ - видаляють з води термічною деаерацією. Деаератори можуть бути вакуумними, атмосферними і підвищеного тиску. В установках надвисокого і надкритичного тиску для повнішого видалення кисню з живильної води доцільно застосувати додаткову хімічну деаерацію води обробкою її гідразин-гідратом.




Висновки


В роботі показано зростання ролі енергетики у зв'язку з прогресуючим виснаженням звичайних енергетичних ресурсів (нафти, газу, вугілля тощо) і з усе більш помітною, іноді вже необоротною, зміною («забрудненням») навколишнього середовища, що супроводжує роботу енергоустановок. Природно, що ощадливе та екологічно чисте використання енергії стає однією з основних задач інженерної діяльності в будь-якій галузі і будь-якої спеціальності.




Література


1.     Алексеев Г.Н. Преобразование энергии. - М., Высш. шк., 1996.

2.     Алексеев Г.Н. Основы теории энергетических установок. - М., Высш. шк., 1988.

3.     Алексеев Г.Н. Прогнозное ориентирование развития энергоустановок. - М., Просвещение, 1994.

4.     Алексеев Г.Н. Энергия и энтропия. - М., Высш. шк., 1978.

5.     Капица П.Л. Энергия и физика. - Вестн. АН СССР, 1976, №1.

6.     Мелентьев Л.А. Оптимизация развития и управления больших систем энергетики. - М., Энергоатомиздат, 1986.


Страницы: 1, 2, 3, 4, 5


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.