рефераты скачать

МЕНЮ


Реконструкция и модернизация подстанции "Ильинск"

Iдоп=665 А> Iннраб,max=115.5 A,


условие по допустимому току выполняется.

Площадь поперечного сечения : S=2.49 cм2 ,

масса 1 м шины :0.672 кг ( табл.7.2[2]).

Механическая система:две полосы-изоляторы должны иметь частоту собственных колебаний больше 200 Гц , чтобы не произошло резкого увеличения усилий в результате механического резонанса.Исходя из этого первое условие выбора пролёта:

 

l £ 0.133×10-2 × 4 Ö E× Jn /mn , (6.4.3)


где Jn=b×h3/12 – момент инерции полосы;

mn = 2.152 кг/м ;

E=7×1010 Па – модуль упругости.


Второе условие выбора такое, чтобы электродинамические силы, возникающие при КЗ не вызывали соприкосновение полос:


l n £ 0.216 × Öаn/ iуд× 4 Ö E× Jn /кср , (6.4.4)


где    кср=0.47;

аn=2×0.8=1.6 см – расстояние между осями полос.


По первому условию


Jn=b×h3/12=5×0.53/12=0.34 ,


тогда l=0.133×10-2 4 Ö 7×1010×0.05/0.672 =0.36 [м].

По второму условию

 


l n =0.216 × Ö 1.6/ 10.6×103 × 4Ö 7×1010×0.05/0.47 =0.78 [м]


Принимаем l n =0.36 м ,

тогда число прокладок в пролете n=l / l n-1 , где l=1.2 м


n=1.2/0.36 – 1=2.3 принимаем n=2


При двух прокладках в пролете, расчетный пролет


l n=l /n+1=1.2/3=0.4 [м].


Определим силу взаимодействия между полюсами:


 fn= (iуд2×кср/4×h) ×10-7, (6.4.8)

 fn= ((10.6×103)2×0.47/4×0.005) ×10-7=264.05 [Н/м].


Напряжение в материале полос:


fn × l n2

 sn=                                (6.4.9)

12× Wn

 

где Wn= h2×b/6 – момент сопротивления одной полосы ;


Wn= 0.52×5/6=0.21 , тогда

 sn =264.05×0.42/12×0.21=16.76 [МПа].

Напряжение в материале шин от взаимодействия фаз:

 

l2×iуд2

sф= Ö3 ×10-8                                      , (6.4.10)

а× Wср

 

где    Wср = h2×b/3 – момент сопротивления;


Wср = 0.52.5/3=0.42 ,


а=0.8 – расстояние между фазами.


sф=1.732×10-8×1.22×10.62×106/0.8×0.42=8.3 [МПа],


шины остаются механически прочными , если


sрасч=sn+sф£sдоп ; (6.4.11)

sдоп=75 [МПа],

sрасч=16.76+8.3=25.1<75 условие выполняется.

7. РАСЧЕТ УСТРОЙСТВ ЗАЗЕМЛЕНИЯ И МОЛНИЕЗАЩИТЫ


При расчёте молниезащиты используется методика из [3]. Принимаем высоту молниеотвода h=50 м ,(см.рис.6)

Зона защиты одиночного стержневого молниеотвода


                                                                                                 О



                                                                                                О’       

                                                                                               


                                                                                                   

                                                                                            K       rx                    M

 





                                                   B                        B’             C              A’                      A

Рис.6


Длина отрезков: CA’=CB’=0.75×h=0.75×50=37.5 [м],

Расстояние: CO’=0.8×h=0.8×50=40 [м],

Длина отрезков: CA=CB=1.5×h=1.5×50=75 [м].

Защиты определяются по следующим выражениям:


rx=1.5(h-1.25hx) при 0 £ hx £ 2/3h , (7.1)

rx=0.75(h-hx) при hx ³ 2/3h. (7.2)


Оптимальная высота молниеотвода определяется из предыдущих выражений по формулам:


hопт = (rx+1.9hx)/1.5 при 0 £ hx £ 2/3h , (7.3)

hопт = (rx+0.75hx)/0.75 при hx ³ 2/3h (7.4)


При hx =20 м

rx=1.5(50-1.25×20)=37.5 [м],

hопт = (37.5+1.9×20)/1.5=50.3 [м].


При hx =40 м

rx=0.75(50-40)=7.5 [м],

hопт = (7.5+0.75×40)/0.75=50 [м].


Устанавливаем на подстанции 4 молниеотвода (смотри план подстанции).

При расчёте устройства заземления для электроустановок 110 кВ и выше согласно ПУЭ сопротивление заземляющей установки должно быть не более 0.5 Ом.

Принимаем сопротивление естественных заземлителей Rе=1.5 Ом. Расчётное удельное сопротивление грунта :


rрасч=rизм×Y, (7.5)


где Y=1.4 – климатический коэффициент для сухого твердого суглинка,


rизм =Rгр=215 [Ом×м],


тогда:


rрасч=215×1.4=301 [Ом×м].


Находим сопротивление исскуственного заземлителя:


Rи= Rе×Rз/ Rе-Rз=1.5×0.5/1.5+0/5=0.75 [Ом]. (7.6)

В качестве вертикального стержня принимаем стальную трубу длиной 3 м и d=0.05 м. При заглублении вертикального стержня ниже уровня земли на 0.7 м ,т.е Н0=0.7 м


Rв= (rрасч / 2p×L)× [ln(2×L)/d+0.5ln(4H0+L)/(5H0+L)], (7.7)

Rв=(301/18.85)×(4.78+1.22)=95.81 [Ом],


На глубине Н=Н0+L/2=2.2 м

 

Rв= (rрасч / 2p×L)× [ln(2×L)/d+0.5ln (4H+L)/(5H+L)]

=(301/18.85)×(4.78+1.22)=79.55 [Ом].


Определим общее сопротивление сетки горизонтальных проводников , выполненных из полосовой стали сечением 40´4 мм . Общая длина горизонтальных заземлителей равна 848 м. Число вертикальных стержней примем 100:


Rг= (rрасч / 2p×L)×ln(2×L2)/b×H=(301/18.85)×17.75=283.5 [Ом],


где     b=40 мм – ширина полосы

Н=0.7 м .

Вертикальные стержни располагаем через 8.5 м ,отсюда Rг с учётом коэффициента использования h=0.19 соединительной полосы:


Rг= 283.5/0.19=1492.1 [Ом].


Уточняем сопротивление искусственного заземлителя


Rи’= Rи×Rг/ Rи+Rг=1.5×0.5/1.5+0/5=0.749 [Ом].

Окончательное число вертикальных заземлителей с учётом коэффициента использования hст=0.5:


n= Rв/hст×Rи’=79.55/0.749×0.5=213 штук.

8. РАСЧЕТ РЕЛЕЙНОЙ ЗАЩИТЫ


Питание цепей релейной защиты и автоматики (РЗА) осуществляется на постоянном оперативном токе от аккумуляторной батареи 220 В. Устройство РЗА всех элементов ПС за исключением ВЛ-10 кВ, секционного выключателя 10 кВ и ТСН размещается на панелях в здании ОПУ. Защита остальных элементов выполнена с использованием оборудования, поставляемого комплектно с камерами КРУН К-37, из которых комплектуется РУ 10 кВ.

 В соответствии с [4] для силового трансформатора 10 000 кВА должны выполнятся защиты: дифференциальная токовая и газовая, которые используются в качестве основных защит, максимальная токовая защита (МТЗ), используемая в качестве резервной, и защита от перегрузки с действием на сигнал.


8.1 Расчет защиты силовых трансформаторов

 

8.1.1 Диффренциальная защита с торможением

Проведем расчет дифференциальной защиты с торможением с применением реле серии ДЗТ-11 [8].

1) Определим значения первичных и вторичных токов плеч дифференциальной защиты. Сторона 10 кВ принимается за основную.

а) Находим первичные номинальные токи трансформатора по формуле:


I1ном=Sном тр/Ö3×Uном , (8.1)


где    Sном.тр – номинальная мощность трансформатора;

Uном – номинальное напряжение.

б) Находим вторичные номинальные токи трансформатора по формуле:

I2ном=I1ном×kсх /ki , (8.2)


где     ki - коэффициент трансформации ТТ (с учетом возможных перегрузок ki=150/5 для стороны ВН, ki=200/5 для стороны СН и ki=600/5 для стороны НН );

kсх - коэффициент схемы, показывающий во сколько раз ток в реле защиты больше чем вторичный ток ТТ. Для схем соединения ТТ в звезду kсх=1, для схем, соединенных в треугольник kсх=Ö3.

Расчет сводим в таблицу 8.1.

Таблица 8.1

Результаты расчета вторичных токов в плечах защиты

Наименование величины

Численное значение для стороны

110 кВ

35 кВ

10 кВ

Первичные номинальные токи трансформатора, А

10000/Ö3×110=52.5

10000/Ö3×35=165

10000/Ö3×10=577.4

Коэффициенты трансформации трансформаторов тока, kI

150/5

300/5

600/5

Схемы соединения трансформаторов тока

D

D

Y

Вторичные токи в плечах защиты, А

52.5×Ö3×5/150=3.03

165×Ö3×5/300=4.76

577.4×1×5/600=4.81


2) Тормозную обмотку реле ДЗТ-11 включаем в плечо 10 кВ.

3) Определим первичный ток небаланса с учетом составляющей Iнб’’’ по формулам:


Iнб=Iнб+Iнб’’+Iнб’’’ , (8.3)

Iнб=kапер×kоднצi×Iк.макс ; (8.3.1)


где    Iк.макс- периодическая слагающая тока (при t=0) при расчетном внешнем трехфазном металлическом КЗ (Iк.макс=4700 А);

¦i - относительное значение тока намагничивания, при выборе трансформаторов тока по кривым 10%ных кратностей принимается равным 0,1;

kодн- коэффициент однотипности, принимается равным 1, если на всех сторонах трансформатора имеется не более одного выключателя;

kапер - коэффициент, учитывающий переходный режим, для реле с НТТ принимаем равным 1.


 , (8.3.2)


где  ,  - периодические составляющие токов (при t=0), проходящих при расчетном внешнем КЗ на сторонах, где производится регулирование напряжения;

,  - относительные погрешности, обусловленные регулированием напряжения на сторонах защищаемого трансформатора и принимаемые половине суммарного (полного) диапазона регулирования напряжения на соответствующей стороне.

 

Iнб=1×1×0.1×4700+0.16×1990+0.05×1930=1154.9 [А],


4) Выбираем ток срабатывания защиты по условию отстройки от бросков тока намагничивания по выражению:


I с.з.=kн×Iном тр=1.5×Iном тр (8.4)


где    kн=1.5 для реле серии ДЗТ.


Iс.з.=1.5×10000/Ö3×10=866 А,

5) Определим число витков обмоток ДЗТ для основной и неосновных сторон:

Расчет будем производить по следующим формулам:


Iс.р.осн=Iс.з.осн. ×kсх осн(3)/ki , (8.5)


где    Iс.з.осн. - ток срабатывания защиты, выбранный по условию (8.4) и приведенный к напряжению основной стороны;

ki - коэффициент трансформации трансформатора тока на основной стороне;

kсх осн(3) - коэффициент схемы для ТТ на основной стороне.


 (8.6)


где  - намагничивающая сила срабатывания реле,


 (8.7)

 (8.8)

 (8.9)


где  и  - расчетные числа витков уравнительных обмоток ДЗТ для неосновных сторон;

 и  - периодические составляющие токов КЗ (при t=0), проходящих при расчетном внешнем КЗ на сторонах, где используются соответственно числа витков  и .

Результаты расчета числа обмоток ДЗТ сводим в таблицу 8.2.

Таблица 8.2

Определение чисел витков обмоток НТТ

Обозначение величины и расчетное

Выражение

 Численное значение

 по (8.5)

Iс.р.осн=866×1×5/600=7.22 А

 по (8.6)

wосн.р.=100/7.22=13.85 вит

 (ближайшее меньшее число)

13 вит

100/13=7.7А

1 по (8.7)

wн.р.1=13×4.81/3.03=20.6 вит

2 по (8.7)

wн.р.2=13×4.81/4.76=13.1 вит

1

20 вит

2

13 вит

 по (8.9)

Iнб’’’=(20.6-20)×1990/20.6+(13.1-13) × ×1930/13.1=72.7


6) Определим необходимое число витков тормозной обмотки по выражению:


 (8.10)


где  - тангенс угла наклона к оси абсцисс касательной, поведенной из начала координат к характеристике срабатывания реле (тормозной), соответствующей минимальному торможению (кривая 2 на рис. 2-16 [8]); для реле ДЗТ-11 принимается равным 0,87 [9].


wm1=1.5×306.9×33/1990×0.87=8.7 вит.


Принимается ближайшее большее число витков тормозной обмотки: 9 вит. (числа витков на тормозной обмотке реле ДЗТ-11 могут быть установлены: 1, 3, 5, 7, 9, 11, 13, 18 и 24).

wm2=1.5×306.9×26/1930×0.87=7.13вит.


Принимается ближайшее большее число витков тормозной обмотки: 9 вит. (числа витков на тормозной обмотке реле ДЗТ-11 могут быть установлены: 1, 3, 5, 7, 9, 11, 13, 18 и 24).

7) Определим коэффициент чувствительности защиты при КЗ в зоне действия, когда ток повреждения проходит только через ТТ сторон 110 кВ и 35 кВ и торможение отсутствует из выражения:


 (8.11)


где  - ток в первичной обмотке НТТ реле ДЗТ при условии, что он проходит по ТТ только одной из сторон, определяется приведением минимального первичного тока КЗ к вторичной цепи этих ТТ с учетом вида повреждения, схем соединения ТТ и обмоток защищаемого трансформатора:


 (8.12)

Iр.мин вн=(1.5×1990) ×5/150=99.5 А

Iр.мин.сн=(1.5×1140) ×5/300=28.5 А


Ток срабатывания реле ДЗТ при выбранном числе витков обмотки на стороне 110 кВ wнеосн1=20 :

Iс.р=100/20=5 А,


Ток срабатывания реле ДЗТ при выбранном числе витков обмотки на стороне 35 кВ wнеосн2=13 :

Iс.р.=110/13=7.7 А,


Коэффициенты чувствительности Kч1=99.5/5=19.9>1,5 , Кч2=28.5/7.7=3.7>1,5 . Окончательно принятый ток срабатывания защиты при Iс.р.осн=7.7 А (см. табл. 6.2) Iс.з.=866 А


8.1.2 Максимальная токовая защита с пуском по напряжению

Максимальная токовая защита (МТЗ) служит для защиты от токов внешних КЗ.

1) Выбор тока срабатывания максимальной защиты:


 (8.13)


где kн – коэффициент надежности, обеспечивающий надежное несрабатывание защиты путем учета погрешности реле с необходимым запасом, kн=1,2;

kсзп – коэффициент самозапуска двигателей нагрузки, kсзп=1, т.к. защита имеет пуск по напряжению, посредством которого защита отстроена от самозапуска;

kв – коэффициент возврата реле, для реле РТ-80 kв= 0,8.

1,4 – коэффициент допустимой перегрузки;

Iт.ном – номинальный ток трансформатора на соответствующей стороне.


Iс.з.в=1.2×1×1.4×10000/0.8×Ö3×110=110.2 А

Iс.з.с=1.2×1×1.4×10000/0.8×Ö3×35=346.4 А

Iс.з.н=1.2×1×1.4×10000/0.8×Ö3×10=1212.43 А


Определим ток срабатывания реле по формуле (8.5):

 Iс.р.в=110.2×Ö3×5/150=6.4 А,


Выберем уставку реле РТ-80/20 Iуст=10 А [10].

Iс.р.в=346.4×Ö3×5/300=9.9 А,


Выберем уставку реле РТ-80/20 Iуст=10 А [10].


Iс.р.в=1212.43×Ö3×5/600=17.5 А,


Выберем уставку реле РТ-80/40 Iуст=20 А [10].

Определим коэффициенты чувствительности по (8.11):

Кч1=99.5/6.4=15.5>1,5; Кч2=28.5/9.9=2.8>1,5.


2) Выбор напряжения срабатывания защиты:


 (8.14)


где     Uном – номинальное напряжение сети.



Определим напряжение срабатывания реле:


 (8.15)

где kн – коэффициент трансформации трансформатора напряжения, установленного на шинах 10 кВ, от которого питаются реле комбинированного пускового органа защиты.


  


Выбираем уставку минимального реле напряжения РН-54/160 Iуст=56 В [10].


3) Напряжение срабатывания фильтр-реле по выражению:


 (8.16)

 

 


По (8.15):


 

 


Напряжение срабатывания реле соответствует минимальной уставке реле типа РНФ-1 с пределами шкалы 6-12 В, Uуст=6 В [10].


4) Выбор времени действия защиты:

 (8.17)


8.1.3 Газовая защита трансформаторов

Газовая защита реагирует на повреждения внутри бака трансформатора, при которых происходит выделение газа или ускоренное протекание масла или смеси масла с газом из бака в расширитель, а также и по другим причинам (междуфазные КЗ, межвитковые замыкания в обмотках, замыкание обмотки на корпус, пожар в стали магнитопровода и др.).

Газовая защита поставляется с газовым реле Бухгольца BF 80/Q (B – реле с двумя элементами, F – с фланцем, 80 – внутренний диаметр фланца в мм, Q – фланец квадратной формы).

 В зависимости от вида и развития повреждения трансформатора возможна последовательная работа сигнального и отключающего элементов реле или их одновременная работа.


8.2 Расчет устройств автоматики установленных на ПС


Устройствами автоматики, установленными на подстанции, предусматривается устранение аварий, связанных:

с повреждениями на шинах 10 кВ;

с повреждениями силовых трансформаторов и трансформаторов с.н.;

с отключением после неуспешного действия АПВ одной из питающих линий.

Аварии ликвидируются действием следующих автоматических устройств:

АПВ выключателей 10 кВ трансформаторов (АПВТ);

АВР секционного выключателя 10 кВ;

АВР секционных отделителей 110 кВ (АО);

АПВ на питающих линиях.

Структурная схема автоматики подстанции представлена на листе.


8.2.1 Устройство АВР секционного выключателя 10 кВ


При повреждении трансформатора Т1 АПВ его выключателя 10 кВ действовать не будет. Оно блокируется при отсутсвии напряжения и включении короткозамыкателя.В этом случае питание шин 1-й секции востанавливается включением от АВР секционного выключателя СВ 10 кВ.Пуск АВР осуществляется вспомогательными контактами короткозамыкателя в момент его включения.Цепь пуска проходит последовательно через вспомогательные контакты короткозамыкателя КЗ1 и выключателя В1.Если включится короткозамыкатель и отключится выключатель В1, то АВР секционного выключателя будет работать с минимальной выдержкой времени t1=1.5с. АВР секционного выключателя должен находится в работе как при двух работающих трансформаторах, так и при одном. В последнем случае АВР будет выполнять роль АПВ секционного выключателя 10 кВ.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.