рефераты скачать

МЕНЮ


Разработка системы релейной защиты блока генератор-трансформатор электрической станции и анализ ее технического обслуживания


2.5.3    Определение уставки третьей гармоники

На рабочую цепь подаётся сумма напряжений третьей гармоники со стороны нейтрали  и линейных выводов , а на тормозную цепь - напряжение третьей гармоники со стороны нейтрали .

Отношение  при снижении которого до заданного уровня срабатывания органа третьей гармоники, представляет собой сопротивление обмотки статора со стороны нейтрали на землю, отнесённое к удвоенному ёмкостному сопротивлению генератора:


                          (5.4)        


Срабатывание органа третьей гармоники определяется уставкой коэффициента торможения, равного отношению напряжения рабочей цепи к напряжению тормозной цепи:


         (5.5)         


где  - коэффициент отстройки;

 - относительное сопротивление срабатывания.

Уставку  выбирают по условию надёжного действия () органа торможения третьей гармоники в конце зоны, охватываемой органом первой гармоники.

При оптимальной уставке реле  напряжение в конце зоны его надёжного действия с  составит . При этом орган напряжения нулевой последовательности охватывает 0,7 числа витков со стороны линейных выводов. Следовательно, зона надёжного действия органа третьей гармоники со стороны нейтрали должна быть .

В случае металлического замыкания в конце этой зоны:


  (5.6)


где:  - ЭДС третьей гармоники генератора.

Принимая  и подставляя его вместо  в выражение (5.5), получаем:


 или:  (5.7)


Такую подстановку следует принимать для всех турбогенераторов независимо от уставки органа напряжения первой гармоники.

Зону действия органа третьей гармоники при металлическом замыкании со стороны нейтрали определяют по выражению (5.5), принимая .

Если принять , то


 и , то .


Отсюда . При  зона действия органа торможения третьей гармоники со стороны нейтрали () составит: .

При замыкании со стороны линейных выводов ():


 и  (5.8)


При этом зона со стороны линейных выводов будет:

 (5.9)


При , зона действия органа торможения третьей гармоники со стороны линейных выводов составит:


 (5.10)


Наличие зоны действия органа третьей гармоники со стороны линейных выводов генератора резервирует реле напряжения нулевой последовательности.

В защите ЗЗГ-1 отстройка от напряжения основной частоты органа третьей гармоники выполнена в недостаточной степени, поэтому при наладке требуется выполнить проверку отстройки органа третьей гармоники от частоты 50 Гц. При необходимости вводится блокировка по напряжению обратной последовательности. Для защиты ЗЗГ-11 такая проверка не требуется. На блокирующем реле напряжения обратной последовательности рекомендуется уставка .

Реле по производной в защите ЗЗГ-12 не имеет регулируемых уставок и расчётная проверка надёжности его действия не требуется. На короткие однофазные замыкания на стороне высокого напряжения реле по производной не реагирует.

Для обеспечения правильной работы органа третьей гармоники следует устанавливать измерительные трансформаторы напряжения в нейтрали и на выводах генератора с одинаковыми номинальными первичными напряжениями. При этом номинальные вторичные напряжения трансформатора напряжения, соединённого в разомкнутый треугольник, равны 100/3 В, а номинальное напряжение трансформатора напряжения, установленного в нейтрали должно быть 100 В.

2.6  Защита от асинхронного режима при потере возбуждения


Защита выполняется на одном из трёх реле сопротивления комплекта КРС-2.Положение характеристики реле на комплексной плоскости сопротивлений определяется положением комплексного сопротивления на выводах генератора в режиме нормальной работы и асинхронном режиме.

В нормальном режиме вектор комплексного сопротивления находится в I квадранте, а при потере возбуждения и переходе в асинхронный режим перемещается в IV квадрант. По этой причине характеристика срабатывания реле сопротивления защиты выбирается в III и IV квадрантах при угле максимальной чувствительности близком к .

Первичное сопротивление срабатывание, определяющее диаметр окружности реле, принимается равным , что целесообразно для обеспечения надёжной работы реле при потере возбуждения ненагруженным генератором.


          (6.1)


Для предотвращения срабатывания реле при нарушениях синхронизма в энергосистеме его характеристика смещается по оси  комплексной плоскости в сторону III и IV квадрантов на . Угол максимальной чувствительности желательно иметь равным . На применяемых реле удаётся получить .

Сопротивлению диаметра характеристики и её смещению в III и IV квадранты соответствуют вторичные значения этих сопротивлений:


 (6.2)


где:  - первичное сопротивление срабатывания или смещения характеристики;

 и  - коэффициент трансформации соответственно трансформаторов тока и напряжения.

Время срабатывания защиты принимается равным 1...2 с. Указанная выдержка времени необходима для предотвращения излишних срабатываний защиты при нарушениях динамической устойчивости и асинхронном ходе в системе.


2.7  Дифференциальная защита трансформатора блока от внутренних повреждений


2.7.1    Общие положения

Дифференциальная защита трансформаторов блоков мощностью 160...1000 Мвт выполняется с использованием дифференциального токового реле с торможением типа ДЗТ-21-У3.

В защите для отстройки от токов включения, при постановке трансформатора под напряжение, используется времяимпульсный принцип с торможением от второй гармоники дифференциального тока. Благодаря этому реле обладает высокой чувствительностью, поскольку ток срабатывания защиты по условию отстройки от броска намагничивающего тока принимается равным .

Для отстройки защиты от токов небаланса при коротких внешних замыканиях используется торможение от токов плеч защиты, что также обусловливает повышение чувствительности защиты. В схемах защиты цепи процентного торможения подключаются со стороны высшего и нижнего тока.

Тормозная характеристика в начальной части имеет горизонтальный участок со ступенчатым регулированием на два положения полусуммы тормозных токов.

Для выравнивания токов плеч защиты и для возможности подключения защиты к трансформаторам тока с номинальным вторичным током 1,0 А (со стороны высокого напряжения) используются согласующие повышающие автотрансформаторы тока типа АТ-31-У3.

При применении для дифференциальной защиты на всех напряжениях трансформаторов тока с номинальным вторичным током 5,0 А согласующие автотрансформаторы тока могут не устанавливаться, однако их применение может оказаться необходимым в тех случаях, когда значение вторичного тока плеча в номинальном режиме трансформатора выходит за пределы номинальных токов ответвлений трансформатора рабочей цепи более, чем 0,5 А (если со стороны высокого напряжения трансформатора не может быть принят другой коэффициент трансформации трансформатора тока).

Для повышения быстродействия защиты при больших токах короткого замыкания внутри защищаемой зоны предусмотрена дифференциальная отсечка, позволяющая фиксировано менять уставку срабатывания ( или ).

В дифференциальной токовой защите типа ДЗТ-21 конструктивно предусмотрено регулирование минимального тока срабатывания, коэффициента торможения, длины горизонтального участка тормозной характеристики, уставки срабатывания дифференциальной отсечки, а также имеется возможность выравнивания тока в плечах защиты.


2.7.2    Минимальный ток срабатывания защиты при отсутствии торможения

Определяется по условию отстройки от тока включения блочного трансформатора под напряжение:


 или  (7.1)

где:  - номинальный ток со стороны высокого напряжения, соответствующий номинальной мощности трансформатора.

Ток ответвления со стороны собственных нужд подаётся в защиту в том случае, если при коротком замыкании за трансформатором собственных нужд  при .

В соответствии с проведёнными расчётами ток ответвлений подаётся в защиту на всех схемах энергоблоков за исключением энергоблоков мощностью 1000 Мвт.

Коэффициент трансформации промежуточного трансформатора тока выбирают таким, чтобы вторичный ток трансформатора тока собственных нужд при вторичном токе, равном номинальному току трансформатора блока, понижался до 2,5...5,0 А.

Помимо условия (7.1) должна обеспечиваться отстройка защиты от токов небаланса при коротком внешнем замыкании или тока нагрузки, соответствующих концу горизонтального участка тормозной характеристики, поскольку в этом случае на реле отсутствует эффект торможения.

Однако на блоках генератор-трансформатор, не имеющих устройства регулирования напряжения под нагрузкой, условие отстройки минимального тока срабатывания защиты от тока небаланса в указанных режимах не проверяется, так как автоматически выполняется при выборе тока срабатывания защиты по выражению (7.1) для случая включения ненагруженного трансформатора под напряжение.


2.7.3    Выбор ответвлений трансформатора рабочей цепи, а также варианта включения автотрансформатора тока.

Определяются первичные номинальные токи для обеих сторон защищаемого трансформатора () и в цепи трансформатора собственных нужд .

Определяются вторичные токи в плечах защиты:

 (7.2)

 (7.3)

  (7.4)


где:  - коэффициент схемы ( при соединении вторичных обмоток трансформаторов тока в звезду и  при соединении в треугольник);

 - коэффициенты трансформации трансформаторов тока на сторонах, соответственно, высокого, низкого напряжений блочного трансформатора и в цепи трансформатора собственных нужд.

Выбираются ответвления трансреактора рабочей цепи для стороны низшего напряжения. Номинальный ток ответвления трансреактора  выбирается ближайшим меньшим по отношению к вторичному номинальному току :


          А (ответвление 1) (7.5)


Для стороны высокого напряжения, если ток  находится в пределах диапазона 2,5...5,0 А (или отличается не более, чем на 0,5 А), номинальный ток ответвлений трансреактора определяется по выражению:


             (7.6)


Принимается =2,5 (ответвление 6)

2.7.4    Определение уставки резистора R13

Уставка реле защиты  выставляется переменным резистором R13. Выбор уставки сводится к определению для каждого плеча защиты минимального тока срабатывания реле , выраженного в долях номинального тока выбранного ответвления трансреактора. При этом следует учитывать наличие автотрансформаторов тока в цепях защиты.

Относительный ток срабатывания реле:

со стороны низкого напряжения трансформатора:


                       (7.7)


со стороны высокого напряжения автотрансформатора при отсутствии автотрансформатора тока:


  (7.8)


В соответствии с паспортными данными защиты ДЗТ-21 резистор R13, подключаемый к регулировочному органу защиты, осуществляет плавную регулировку тока срабатывания реле в пределах от 0,3 до 0,7 номинального тока ответвления.


2.7.5    Проверка отстройки защиты от короткого замыкания за трансформатором собственных нужд

Определяется приведённое к стороне низкого напряжения трансформатора блока максимальное значение тока короткого трехфазного замыкания на стороне низкого напряжения трансформатора собственных нужд (на одной из расщеплённых обмоток) при максимальном режиме работы системы.


2.7.6    Выбор ответвлений трансформаторов тока тормозной цепи реле

В рассматриваемых схемах тормозные цепи реле присоединяются к трансформаторам тока со стороны обмоток высокого и низкого напряжений блочного трансформатора. Для этого используются два трансформатора тока цепи процентного торможения защиты ДЗТ-21, имеющие по четыре ответвления.

Номинальные токи ответвлений трансформаторов тока цепи процентного торможения выбираются ближайшими большими подводимых к реле токов плеч  или  и :


для ТLА2:            (ответвление 6)            (7.9)

для ТLА1:   (ответвление 6) (7.10)


2.7.7    Расчёт защиты в условиях торможения

Использование тормозных цепей даёт возможность не отстраивать минимальный ток срабатывания защиты от внешних повреждений, когда имеется торможение.

Предотвращение срабатывания защиты в условиях торможения обеспечивается исходя из тормозной характеристики реле, которая должна выбираться таким образом, чтобы при всех возможных вариантах внешних повреждений обеспечивался необходимый коэффициент торможения.

Несрабатывание защиты обеспечивается, если все точки, соответствующие возможным при внешних коротких замыканиях отношениям приращения рабочего тока  к приращению полусуммы тормозных токов , лежат ниже тормозной характеристики реле.

При определении коэффициента торможения следует рассмотреть короткие замыкания в точках, в которых отстройка производится с помощью торможения.

На блоках с двухобмоточными трансформаторами при внешнем повреждении на стороне высокого (низкого) напряжения блока за расчётную следует принимать точку, в которой ток короткого замыкания имеет наибольшее значение и в которой защита не должна действовать. При внешнем повреждении на ответвлении к собственным нуждам торможение не требуется и не учитывается в расчёте.

С учётом вышеизложенного определение коэффициента торможения должно производиться при внешнем трёхфазном коротком замыкании на стороне высокого напряжения трансформатора блока для энергоблоков, не имеющих выключателя или с выключателем нагрузки в цепи генераторного напряжения, и на стороне низкого напряжения - для блоков с выключателем в цепи генераторного напряжения. Последнее необходимо для сохранения электроснабжения собственных нужд при повреждениях генератора. При отсутствии выключателя в цепи генератора отстройки защиты от коротких замыканий в генераторе не требуется, так как при этом энергоблок отключается полностью.

Значения рабочего тока , необходимые для подсчёта коэффициента торможения, могут быть определены следующим образом.

Ток в рабочей обмотке при внешнем трёхфазном коротком замыкании на стороне высокого и низкого напряжения трансформатора блока для каждого случая подключения дифференциальной защиты равен току небаланса:


                              (7.11)


Ток небаланса определяется как сумма двух составляющих вторичного тока небаланса  и . Составляющая , обусловленная регулированием напряжения трансформатора, в токе небаланса отсутствует, так как трансформаторы блоков указанного регулирования не имеют


=0,995+0,099=1,09 (7.12)


где:  - составляющая, обусловленная погрешностью трансформаторов тока;

 - составляющая, обусловленная неточностью установки расчётного тока срабатывания на ответвлениях трансформаторов рабочей цепи реле.

В выражении (7.12) учитываются абсолютные значения составляющих тока небаланса  и . Составляющие тока небаланса определяются по выражениям:


         (7.13)

=               (7.14)


где:  - коэффициент, учитывающий переходный режим (апериодическую составляющую тока), принимается равным 1,0;

 - коэффициент однотипности трансформаторов тока, принимается равным 1,0;

 - относительное значение полной погрешности трансформаторов тока, принимается равным 0,1;

 - периодическая составляющая вторичного тока() в плече защиты со стороны высокого и низкого напряжения трансформатора блока при внешнем коротком замыкании в расчётной точке (определяется исходя из значения первичного тока  в рассматриваемом расчётном режиме с учётом коэффициента трансформации трансформаторов тока  или  со стороны, соответственно, высокого или низкого напряжения трансформатора блока и коэффициента :


 (7.15)


 - коэффициент трансформации автотрансформаторов тока (в соответствии с выражением), при отсутствии автотрансформаторов тока ;

 - расчётное значение номинального тока ответвления трансреактора в плечах защиты со стороны высокого напряжения () или низкого напряжения () трансформатора блока определяется соответственно по (7.6) или (7.3);

 - номинальный ток выбранного ответвления трансреактора  или .

Относительные значения токов в рабочей цепи определяются при внешнем коротком замыкании на стороне высокого или низкого напряжения трансформатора блока в плече защиты (в соответствии с п.2.7.7, 2.7.1.):


                                               (7.16)


Минимальное значение тормозного тока следует определять в тех же расчётных точках, что и при расчёте рабочих токов реле.

Тормозной ток для каждой тормозной цепи:


              (7.17)


где:  - первичный ток короткого замыкания при внешнем повреждении;

 - коэффициент схемы.

Относительные значения токов в тормозных цепях:


 (7.18)

                     (7.19)


Для расчёта защиты в условиях торможения реле необходимо выбрать ток начала торможения , то есть длину горизонтального участка тормозной характеристики реле. С целью повышения чувствительности защиты к межвитковым коротким замыканиям в трансформаторе рекомендуется принимать длину горизонтального участка тормозной характеристики .

Коэффициент торможения реле , характеризующий тормозное действие реле, определяется как отношение приращения тока в рабочей (дифференциальной) цепи реле  к полусумме приращения тока в тормозной цепи реле :


                                           (7.20)


Из тормозной характеристики реле видно, что:

                                   (7.21)       

                                            (7.22)


Коэффициент торможения защиты определяется исходя из выражений (7.20) - (7.22):


                 (7.23)       


где:  - коэффициент отстройки, принимается равным 1,5;

 - относительное значение тока рабочей цепи реле при внешнем повреждении в расчётной точке;

 - определяется согласно формулам (7.7, 7.8);

 - относительное значение суммы тормозных токов при внешнем коротком замыкании, определяется с использованием (7.18, 7.19);

 - ток начала торможения, принимается равным 1,0.

Принимаем =0,3


2.7.8    Выбор уставки дифференциальной отсечки

Дифференциальная отсечка используется для повышения быстродействия защиты при больших кратностях тока короткого замыкания в защищаемой зоне.

Уставку отсечки во всех случаях можно принимать минимальной, поскольку при этом обеспечивается её отстройка от токов включения и от токов небаланса при внешних коротких замыканиях .



2.7.9    Определение чувствительности защиты

Чувствительность защиты на рассматриваемых энергоблоках при повреждении в защищаемой зоне следует определять при отсутствии торможения.

При коротком замыкании в зоне защиты полусумма тормозных токов всегда оказывается меньше тока в дифференциальной цепи. Поэтому расчётная точка, соответствующая минимальному короткому замыканию в зоне защиты, в плоскости координат (, ) всегда лежит выше тормозной характеристики реле, а прямая, соединяющая эту точку с началом координат, является геометрическим местом точек, соответствующих изменяющемуся переходному сопротивлению в месте короткого замыкания. Эта прямая всегда пересекает горизонтальную часть тормозной характеристики. На этом пересечении защита работает на пределе чувствительности с током .

Коэффициент чувствительности защиты определяется по выражению:


                       (7.24)


где: = - относительное значение вторичного тока в месте двухфазного короткого замыкания (для отсечки ток короткого замыкания рассчитывается в рабочем, а не в минимальном режиме);

 - относительное значение минимального тока срабатывания реле.

Чувствительность защиты определяется при металлическом повреждении на выводах трансформатора блока.

Расчётными для станции и системы являются реально возможные режимы, обусловливающие минимальный ток повреждения. В соответствии с ПУЭ коэффициент чувствительности должен быть .


2.8  Дифференциальная защита ошиновки 330 - 750 кВ


2.8.1    Общие положения

Для подключения защиты используются трансформаторы тока с одинаковыми или различными коэффициентами трансформации с номинальным значением вторичного тока, как правило, 1А. Защита выполняется с использованием дифференциальных реле с быстронасыщающимися трансформаторами типа РНТ-566 в связи с тем, что общая резервная дифференциальная защита энергоблока, охватывающая и ошиновку в том числе, выполнена на реле с торможением.


2.8.2    Определение минимального тока срабатывания и расчёт числа витков рабочей обмотки

Первичный минимальный ток срабатывания дифференциальной защиты  выбирается из условия отстройки от максимального рабочего тока небаланса  при переходном режиме внешнего короткого замыкания:


                  (8.1)


где:  - коэффициент отстройки, принимается равным 1,3.

Расчётный ток небаланса:


     (8.2)


где: -коэффициент, учитывающий апериодическую составляющую тока, может быть принят равным 1,0;

 - коэффициент однотипности трансформаторов тока, принимается равным 1;

 - полная относительная погрешность трансформаторов тока, принимается равной 0,1;

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.