рефераты скачать

МЕНЮ


Разработка электроприводов прессовых машин


2.3.3 Сушилка СГ-300

Предназначена для нагрева гранулированных термопластов до температуры 120 °С и удаления влаги. Состоит из устройства для нагрева гранул и элементов управления и регулирования температуры. Управление сушилкой осуществляется с пульта управления экструзионной линии.

Устройство для нагрева гранул состоит из бункера, калорифера, вентилятора, распределителя и крышки.

В бункер подсушки подаются гранулы. Подогретый в калорифере до заданной температуры воздух вентилятором нагнетается в нижнюю часть бункера, проходит через распределитель и слой гранул, осушает и подогревает их до требуемой температуры и выбрасывается в атмосферу или поступает в калорифер.

Система теплового контроля и регулирования обеспечивает поддержание заданной температуры воздуха поступающего в бункер сушилки.

Термопара, установленная на выходе из вентилятора измеряет температуру горячего воздуха и подает сигнал на регулирующий прибор, установленный в шкафу контроля и регулирования.


2.3.4 Головка трубная ГТ-50/75

Головка для формования труб имеет сборную конструкцию и состоит из двух базовых групп элементов: мундштука и дорна. Цилиндрические элементы мундштука и дорна формуют соответственно внешнюю и внутреннюю поверхность трубы. Сборная конструкция облегчает изготовление, монтаж и переналадку инструмента, так как головка может состоять из базовых и сменных элементов. Конечные элементы мундштука и дорна формируют заданный диаметр трубы. Для предотвращения резких скачков давления, ускорения протекания расплава и улучшения показателей его гомогенизации в конструкцию головки часто вводят специальный элемент - распределитель. В зависимости от материала расплава используют разные типы распределителей -спиральные или радиальные. Спиральные распределители представляют собой сердечник, на цилиндрической поверхности которого прорезано несколько спиральных канавок, постепенно сходящих на нет. Эти спиральные канавки заставляют расплав разделиться на два потока. Первый поток продолжает двигаться поступательно, второй поток закручивается по спиралям. Радиальный распределитель представляет собой диск с окошками, образованными радиальными направляющими перегородками. В рассматриваемой экструзионной линии трубная головка предназначена для формирования заготовок труб диаметром 50, 63, 75 мм из ПЭНД.

Обогрев головки производится электрическими обогревателями сопротивления.

Количество зон обогрева - 2.

Максимальная температура нагрева корпуса головки - 57()°С.

На головке установлены датчики давления и температуры расплава, а также предусмотрены каналы 6 для сообщения внутренней полости изготавливаемых труб с воздухом.

Регулировка толщины трубной заготовки и равномерность выхода массы по периметру формирующего зазора производится с помощью регулировочных винтов.


2.3.5 Калибратор

Предназначен для образования на поверхности заготовки охлажденного затвердевшего слоя, который к моменту выхода заготовки из калибрующего устройства обеспечивает сохранение трубой необходимой формы и размеров при прохождении через охлаждающие ванны.

Выходящая из головки пластичная и горячая труба поступает в стальную калибрующую гильзу, вставленную в вакуумную камеру с разбрызгивающими форсунками. Внутренняя поверхность калибрующей гильзы полированная и имеет поперечные кольцевые проточки с отверстиями для отвода воздуха. В корпусе гильзы имеются каналы водяного охлаждения. За счет разницы давления снаружи и внутри цилиндрическая поверхность трубы прижимается к калибрующей поверхности )ильзы, таким образом, происходит уплотнение наружной поверхности и ее охлаждение. Калибровочные гильзы могут оснащаться водно-капельными завесами для первичного охлаждения трубы. Выходя из калибровочной гильзы, труба попадает в вакуумную камеру с набором диафрагм-держателей. Вдоль всей камеры осуществляется разбрызгивание волы для охлаждения трубы. Выходная втулка для герметизации камеры имеет резиновое уплотнительное кольцо. За счет смены втулки, гильзы и системы диафрагм можно калибровать трубы разного диаметра.

Мощность электродвигателя насоса- 1,5 кВт.


2.3.6 Охлаждающая ванна

Предназначена для охлаждения труб орошением водой и обдува их на выходе для удаления влаги.

Охлаждение в зависимости от выбранного технологического процесса может быть струйным или струйно-погружным. В первом случае труба проходит через камеру, где на нее из форсунок с большой скоростью разбрызгивается вода, и далее сразу следует тянущее устройство. Во втором случае труба проходит через двухсекционную ванну, одна часть которой полностью заполнена водой, а во второй осуществляется разбрызгивание воды из форсунок.

Длина охлаждающей зоны - 3500 мм.

Мощность электродвигателя насоса- 1,5 кВт.

Корпус представляет собой сварную конструкцию. Внутри корпуса смонтированы 4 трубопровода с форсунками для охлаждения труб орошением водой. На выходе из корпуса предусмотрен отсек для установки в нем обдува. Обдув представляет собой камеру, в которую из сети подается сжатый воздух. Внутри гильзы камеры проходит труба, которая обдувается струями воздуха, выходящими из 40 отверстий диаметром 1,5 мм. Для циркуляции воды в системе установлен центробежный насос.

2.3.7 Толщиномер

Толщиномер - прибор, который служит для замера толщины стенки.

Действие прибора основано на индуктивном методе, при котором измерительная головка реагирует на металл вводимый в активную зону головки. В измеряющую трубу вводится рефлектор. Подпружиненные металлические детали рефлектора плотно прилегают к внутренней поверхности трубы. Прибор фиксирует расстояние между измерительной головкой и деталями рефлектора.

Толщиномер замеряет толщину стенки для труб диаметром до 500 мм.


2.3.8 Маркиратор

Маркиратор предназначен для нанесения шрифта (маркировки) непосредственно на трубы.

Маркировка:                                                             ПНД 63с литьевая

                                                                             ГОСТ 18599-830898

- значок, обозначающий АО «Казаньоргсинтез»;

ПНД - полиэтилен низкого давления;

63 - диаметр трубы;

С - средняя;

0898 - месяц и год изготовления.

Обогрев маркиратора - электрический, нагревателями сопротивления.Мощность нагревателя -1,5 кВт.

Маркиратор представляет собой колесо, на поверхности которого

расположен разогретый шрифт, входящий в контакт с трубой.


2.3.9 Тянущее устройство

Для протягивания трубы через систему калибраторов необходимо создать тяговое усилие и обеспечить регулируемую скорость движения грубы. Эту задачу выполняет гусеничное тянущее устройство. Рабочим органом этой установки являются две или несколько гусениц, которые синхронно вращаются, заключив между собой трубу. Двухгусеничные тянущие устройства используются преимущественно для протягивания труб от малого до среднего диаметра (от 20 до 250 мм). Многогусеничньте устройства необходимы для работы с тонкостенными трубами или трубами больших диаметров. Прижим гусениц к профилю осуществляется пневмоцилиндрамис регулировкой усилия прижима. Скорость тянущего устройства регулируется бесступенчато. Нижняя гусеница имеет привод регулировки по высоте, чтобы подстраиваться под определенный диапазон диаметров трубы. Для предотвращения боковых или вертикальных перемещений тянущее устройство имеет опорные валики, которые регулируются в зависимости от размеров трубы.

Чтобы избежать опасных усилий в передаточных парах кинематики, каждая из гусениц оснащена дифференциальной муфтой, которая также обеспечивает равномерное и синхронное движение всех гусениц.

Количество гусениц - 2 шт.

Мощность привода - 4,2 кВт.


2.3.10 Длиномер

Длинномер представляет собой колесо, входящее в контакт с трубой. При повороте колеса на один оборот труба проходит 0,5 м. К колесу прикреплен флажок, который, проходя за каждый оборот через паз бесконтактного переключателя, выдает импульс на реле счетчика импульсов.


2.3.11 Машина намоточная

Предназначена для намотки труб в бухты с наружным диаметром не более 2000 мм и шириной не более 400 мм.

Скорость наматывания - не более 25 м/мин.

Мощность привода - 1,7 кВт.

Состоит из двух бухтовых головок, вращаемых электродвигателем постоянного тока, через клиноременную передачу. Момент передается на редуктор связанный цепной передачей с валом привода.

На валу привода смонтированы две свободно вращающиеся звездочки, которые связаны с валом через электромагнитные муфты. При включении соответствующей электромагнитной муфты приводится во вращение соответствующая бухтовая головка.

3. Система управления электроприводом и требования ней


Комплект управления привода червячного пресса линии для производства труб на базе ТПЧ-320/460 укомплектован релейно-контакторной, пускорегулирующей и сигнализирующей аппаратурой, приборами контроля и измерения нагрузки частоты вращения.

Комплект содержит полный состав электрооборудования для контроля и управления приводом червячного пресса с электродвигателями постоянного тока на напряжение U=440В и на токи I= 250/320А.

Схемой предусмотрено управление приводом постоянного тока, приводом вентилятора охлаждения электродвигателя постоянного тока, а так же технологические блокировки линий и перегрева пресса.

Комплект управления является законченным изделием и устанавливается у механизма (пульт управления) или в другом месте [3]. Нормальная работа системы управления обеспечивается в закрытых условиях при соблюдении следующих условий:

а) высота над уровнем моря – до 1000м;

б) температура окружающей среды – 1/+40 С;

в) относительная влажность воздуха – не более 80%;

г) окружающая среда невзрывоопасна, не содержащая пыли, агрессивных паров и газов в концентрациях, разрушающих металлы и изоляцию.

Регулируемый электропривод выполнен по системе тиристорный преобразователь – двигатель (ТП-Д). Регулирование скорости двигателя производится изменением напряжения на якоре двигателя при постоянном токе возбуждения [4].

Для автоматического поддержания постоянства скорости привода применена жесткая обратная связь по скорости. В качестве датчика скорости используется тахогенератор типа ТС-1, напряжение пропорциональное скорости двигателя включено встречно с задающим напряжением , снимаемым с датчика скорости.

Результирующий сигнал поступает на вход промежуточного усилителя тиристорного агрегата. Система автоматического регулирования обеспечивает поддержание скорости с точностью +/-2% при изменении момента нагрузки на валу двигателя от 0,5Мн до 1Мн и изменении напряжения сети в пределах (0,95+1,1) UH в диапазоне регулирования скорости 1:10.

4 Расчёт мощности и выбор электродвигателя


4.1 Выбор электродвигателя


При рассмотрении работы двигателя, приводящего в действие производственный механизм, необходимо выявить соответствие механических свойств электродвигателя характеристике производственного механизма.

Экструдер должен иметь жесткую механическую характеристику. Такой механической характеристикой обладают двигатели постоянного тока с независимым возбуждением (ДПТ НВ) и асинхронные двигатели (в пределах рабочего участка механической характеристики). Наиболее широкое применение в промышленности при разработке регулируемых ЭП нашли ДПТ НВ. Это обусловлено их высокими регулировочными и пусковыми характеристиками, а также хорошими показателями качества переходных процессов.

Правильный выбор двигателя имеет большое значение, поскольку оказывает определяющее влияние на первоначальные затраты, стоимость эксплуатационных расходов, обеспечение всех технологических режимов работы и необходимых динамических и статических характеристик. Мощность электродвигателя выбирается, исходя из необходимости обеспечения заданной работы ЭП при соблюдении нормального теплового режима и допустимой механической перегрузки двигателя.

Расчет мощности электродвигателя для привода червячного пресса будем вести исходя из следующих данных [5]:

-рабочий момент на шнеке экструдера: н. м;

-передаточное число редуктора: i – 16 (редуктор типа Ц2У-355 Н-16-13);

-КПД редуктора: ;

-частота вращения шнека регулируемая: w; w;

или: nоб/мин; nоб/мин.

Приведем момент шнека к моменту на валу двигателя, через передаточное число редуктора и его КПД по формуле:


;


(нм)

Зная момент на валу электродвигателя можно найти расчетную мощность двигателя:



где  - коэффициент запаса по мощности, учитывающий динамические режимы работы электродвигателя, когда он работает с повышенными моментами;


;


(Вт)

Переведем угловую скорость вращения вала из рад/с в об/мин:


;

(об/мин);

Целью данного расчета является замена физически и морально устаревшего электродвигателя постоянного тока серии 2П. Исходя из полученных данных, т.е. мощности двигателя  Вт и номинальной частоты вращения ( об/мин). Выбираем электродвигатель из наиболее совершенной серии 6П.

Из справочника наиболее подходящим для данных условий является двигатель 6ПФ250МГУХЛ4. Его основные данные приведены ниже:

Тип двигателя: 6ПФ250МГУХЛ4

 КВТ

 В

 об/мин

 об/мин

КПД=89,0 %

 А

кг-

 Ом

 Ом

 Ом

По сравнению с предшествующими сериями у машин серии 6П повышена перегрузочная способность, расширен диапазон регулирования частоты вращения, улучшены динамические свойства, уменьшены шум и вибрация, повышена мощность на единицу массы, увеличена надежность и ресурс работы.

Питание ДПТ может осуществляться от источника постоянного тока или от тиристорного преобразователя. При питании от ТП допустимый ток якоря уменьшается в зависимости от схемы выпрямления и электромагнитной постоянной времени якорной цепи. Устойчивая работа ДПТ обеспечивается схемой управления электропривода.

Определим конструкционный коэффициент двигателя.


, (4.9)


где -номинальное напряжение питания электродвигателем

-номинальный потребляемый ток электродвигателя

-суммарное сопротивление цепи якоря электродвигателя

-верхняя скорость вращения вала электродвигателя в номинальном режиме


 (4.10)


где -сопротивление якоря, 0,068 (Ом)

-сопротивление добавочных полюсов, 0, 0098 (Ом)

 (Ом) (4.11)

Номинальный ток якоря:


; (4.12)


где -номинальное напряжение питания электродвигателем

-электрическая мощность двигателя, потребляемая из сети:

, (4.13)


-КПД электродвигателя 89%,

 кВт, (4.14)

тогда  А, (4.15)

тогда  (4.16)


4.2 Электродвигатели постоянного тока серии 6ПФ


Предназначены для регулируемых электроприводов главного движения металлорежущих станков с ЧПУ, гибких производственных систем и другого автоматизированного оборудования.

Структура условного обозначения машины постоянного тока 6ПФ250МГУХЛ4:

6 - порядковый номер серии;

П - электродвигатель постоянного тока;

Ф - защищенное исполнение с независимой вентиляцией;

250 - высота оси вращения, мм;

М - условная длина сердечника якоря (М - вторая длина);

Г - наличие встроенного тахогенератора;

УХЛ - климатическое исполнение двигателя;

4 - категория размещения (4 - в закрытом помещении с отоплением и вентиляцией).

Широкорегулируемые повышенной точности с пристроенным тахогенератором постоянного тока и датчиком тепловой защиты, с независимой вентиляцией от пристроенного электровентилятора типа "наездник", степень защиты IР238 по ГОСТ 17494-87, способ охлаждения IС06 по ГОСТ 20459-87.

Расположение вентилятора на торцевой поверхности электродвигателя со стороны коллектора, или на боковой поверхности, сверху. Возможна установка фильтра вентилятора для защиты от попадания пыли вовнутрь. Применена изоляция класса нагревостойкости F по ГОСТ 8865-87.

Группа механического исполнения по ГОСТ 17516.1-90. Конструктивное исполнение по способу монтажа IМ2101 по ГОСТ 2479-79 - горизонтальное, вертикальное валом вверх или валом вниз, крепление за лапы, за фланец.

Режим работы продолжительный S1, допускается работа в режимах S2-S8 по ГОСТ 183-74.

Средний уровень звука при номинальной частоте вращения до 900 мин"1 соответствует классу 1, при номинальной частоте вращения 900 мин" и выше, соответствует классу 2.

Двигатели допускают регулирование частоты вращения напряжением якоря в диапазоне от 0 до 460 В при постоянном моменте, при этом допускается стоянка с моментом, равным половине номинального.

Двигатели допускают регулирование частоты вращения до максимальной ослаблением поля при номинальном напряжении на якоре в диапазоне не менее 1:3 при постоянной мощности.

Условия эксплуатации:

-высота над уровнем моря не более 1000 м;

-температура окружающей среды от 1 до 40°С;

-относительная влажность воздуха до 98% при 1=35°С:

-окружающая среда невзрывоопасная, не содержащая металлической или другой токопроводящей пыли, агрессивных газов и паров в концентрациях разрушающих металлы и изоляцию;

-надежность и долговечность;

-вероятность безотказной работы за наработку 10 000ч не менее 0,95;

-средний ресурс до списания 30 000ч;

-средний срок службы 1 5 лет.


4.3 Датчики тока и скорости


Наибольшее распространение в регулируемом электроприводе имеют датчики тока и скорости, необходимые для формирования замкнутых контуров в системе регулирования.

Известны две основные системы образования токовой обратной связи: по переменному току на первичной обмотке трансформатора и по постоянному току цепи якоря двигателя. В данной работе используем второй способ. В этом случае измеренное напряжение снимается с шунта, включенного в цепь якоря двигателя. При этом отпадает необходимость в выпрямлении напряжения, однако чувствительность схемы невелика. Номинальное напряжение, снимаемое с шунта, составляет 0,075 или 0,1 В и нуждается в последующем усилении.


 (4.17)

 (4.18)


 Ом (4.19)

где -напряжение, снимаемое с шунта,  В;

-ток якоря электродвигателя

Данное устройство является стандартным, поэтому с учетом номинального значения тока якоря выбираем шунт типа: номинальный ток которого А, номинальное падение напряжения 75 мВ, класс точности

Определим коэффициент шунта:

 (4.20)


 (4.21)

Выходное напряжение подается на дополнительный усилитель и специальное устройство, которое осуществляет гальваническую развязку силовой цепи от системы управления.

Самым распространённым датчиком обратной связи по скорости в регулируемом электроприводе является тахогенератор. Обратная связь по скорости необходима для создания широкорегулируемого электропривода, поскольку статизм разомкнутой электромеханической системы имеет недопустимо большое значение в нижнем диапазоне регулирования.

Однородность тока тахогенератора и двигателя создаёт определённые удобства при эксплуатации привода, поэтому в подавляющем большинстве случаев применяют тахогенераторы постоянного тока. Стремление уменьшить обратные пульсации требует встройки тахогенератора в двигатель и установки его на якорь электродвигателя. В современных моделях используют тахогенераторы с возбуждением от постоянных магнитов.

Передаточная функция тахогенератора соответствует инерционному звену первого порядка:


 (4.22)


где -коэффициент усиления тахогенератора;

-постоянная времени тахогенератора.

Однако постоянная времени тахогенератора невелика ( с) и часто в расчетах подобной величиной пренебрегают. В этом случае тахогенератор представляется безинерционным звеном с передаточной функцией:


, (4.23)


Величину коэффициента усиления тахогенератора можно определить по следующей формуле:


 (4.24)


где -номинальное напряжение на якоре тахогенератора;

-номинальная скорость тахогенератора


 (4.25)


 об/мин

Двигатель имеет тахогенератор типа ТС-1, с закрытым встроенным исполнением. Возбуждение тахогенератора от постоянных магнитов. Крутизна напряжения 0,033 , нагрузочное сопротивление не менее 2 кОм. Допустимые кратковременные перегрузки по току при номинальном потоке возбуждения:

в течении 60 секунд,

в течении 10 секунд.


4.4 Время разгона двигателя


Найдем момент инерции шнека:

 (4.23)


где d-диаметр шнека (d=0,9 м);

l-длина шнека (l=2,7 м);

-плотность стали ();

i-передаточное число редуктора (i=16)


 (4.24)


Суммарный момент инерции на валу двигателя:


 (4.25)


где –момент инерции двигателя ();

 (4.26)

Время разгона двигателя найдем по формуле:


 (4.27)


 с

где –дополнительный момент при пуске;

-момент на валу двигателя ().

Дополнительный момент при пуске:


, (4.28)

где –коэффициент перегрузочной способности электродвигателя ()

 (4.29)

Таким образом, нормальное время разгона системы до номинальной скорости составляет 8, 89 с.


5 УПРАВЛЯЕМЫЙ ВЫПРЯМИТЕЛЬ


Выпрямление предназначено для преобразования переменного тока в постоянный, и заключается в том, что нагрузка циклически переключается с одной фазы источника переменного напряжения на другую. Такое переключение осуществляется вентилями и называется коммутацией [6].

Страницы: 1, 2, 3, 4, 5, 6, 7


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.