рефераты скачать

МЕНЮ


Радиационное излучение и его проявление в Сверловской области и городе Екатеринбурге

Деление ядер урана, осуществляемое в реакторах, сопровождается образованием большого числа радиоактивных различных осколков. Расчеты показывают, что на 22 000 квт-ч энергии образуется примерно 1 s осколков. При этом испускаются β-лучи и γ-излучение. Кроме того, реакторы, работающие с замедлителями, испускают мощные потоки тепловых нейтронов, которые используют для получения различных искусственно-радиоактивных изотопов. Эти изотопы применяют для исследований в различных областях народного хозяйства.

Нейтронные потоки и у-лучи, возникающие в ядерных реакторах, имеют большую интенсивность, обладают высокой проникающей способностью и губительно действуют на организм человека. Поэтому для защиты персонала, обслуживающего ядерные реакторы, применяют специальные меры. Одна из наиболее эффективных мер - автоматизация процессов управления реактором.

Примером гетерогенного ядерного реактора на медленных нейтронах является реактор первой в мире советской атомной электростанции, введенной в эксплуатацию 27 июня 1954 г. Полезная мощность реактора составляет 5000 кет. Замедлителем нейтронов служит графит. Активная зона реактора представляет собой графитовый цилиндр диаметром 1,5 -и и высотой 1,7 м, окруженный графитовым отражателем. В активной зоне расположены 128 вертикальных рабочих каналов для помещения в них делящегося вещества - природной смеси урана, обогащенной изотопом 92U235. Рабочие каналы выполнены в форме стальных трубок, на которые надеты втулки из уранового сплава. Внутри трубок протекает вода для охлаждения урана. В активной зоне расположены также 22 канала для управляющих стержней из карбида бора, сильно поглощающего тепловые нейтроны. С помощью управляющих стержней мощность реактора поддерживается на необходимом заданном уровне. Вода, охлаждающая реактор, становится радиоактивной. Нагретая вода поступает в парогенератор и там передает тепло воде, циркулирующей во втором замкнутом контуре, в котором образуется пар с давлением 12,5 атм и температурой 260 °С, подводимый затем к турбине.

Управление узлами атомной электростанции автоматизировано и производится на расстоянии.

Первая советская атомная электростанция (АЭС) явилась прототипом для крупнейшей в СССР Белоярской атомной электростанции им. И. В. Курчатова. Первый блок этой станции мощностью 100 тыс. кет введен в эксплуатацию в 1964 г. Использование сверхкритических параметров пара (давление 250 атм, температура 535-565 °С) позволило повысить коэффициент полезного действия этой станции.

Урановые реакторы на тепловых нейтронах могут решить задачу энергоснабжения в ограниченном масштабе, который определяется количеством урана 92U235. При использовании всего природного запаса 92U235 можно получить энергию, приблизительно эквивалентную запасам обычного топлива на Земле.

Для увеличения ядерных энергетических ресурсов используются процессы, происходящие при захвате нейтронов ядрами 92U233 и тория 90Th232. Они приводят к появлению эффективно делящихся плутония 94Pu286 и изотопа урана 92U233 . Схема получения плутония:

Реакция на тории происходитпо следующей схеме:

 

Захват нейтронов ядрами 92U238 сопровождается созданием ядерного горючего, которое может быть химическим путем отделено от 92U238. Этот процесс называется воспроизводством ядерного горючего. При делении одного ядра ^ „U"5 образуется в среднем 2,5 нейтрона, из которых лишь один необходим для поддержания цепной реакции. Остальные 1,5 нейтрона могут быть захвачены ядрами y^V233 и из них могут быть образованы 1,5 ядра 94Pu239. В специальных бридерных (воспроизводящих) реакторах коэффициент воспроизводства ядерного горючего превышает единицу. В урановых реакторах, работающих на медленных нейтронах, этого осуществить нельзя. Действительно, в таком реакторе деление происходит в 84,5 случаях из 100 поглощений тепловых нейтронов ядрами 92U235. Теоретически возможный максимальный коэффициент воспроизводства ядерного горючего составит 2,5-0,845-1=1,11 вместо 1,5. В результате поглощения нейтронов замедлителем и их вылета за пределы реактора он еще уменьшится. В реакторах с замедлителем коэффициент воспроизводства ядерного горючего, как правило, меньше единицы. Например, в реакторе первой АЭС он составляет всего 0,32.

Бридерные реакторы работают на быстрых нейтронах. Активной зоной является сплав урана, обогащенного изотопом 92U235, с тяжелым металлом (висмут, свинец), мало поглощающим нейтроны. В бридерных реакторах отсутствует замедлитель. Управление таким реактором производится перемещением отражателя или изменением массы делящегося вещества.

В СССР созданы реакторы на быстрых нейтронах, дающие огромную интенсивность нейтронных потоков. В Советском Союзе-пионере ядерной энергетики ведется большая работа по ядерному реакторостроению и мирному использованию энергии делящихся ядер.

Последовательная борьба Советского Союза за мирное использование внутриядерной энергии нашла свое отражение в достигнутом в 1964 г. соглашении между СССР и США о направлении большого количества расщепляющихся материалов для использования в мирных целях, в том числе для опреснения морской воды. Расчеты показывают, что реактор на быстрых нейтронах мощностью 2,2 -10s вт может обеспечить работу электростанции мощностью 5,1-Ю8 вт и дистилляционной опреснительной установки производительностью 180 тыс. м3 пресной воды в сутки при стоимости воды 2-3 копейки за 1 м3. При достижении реакторами мощности (10-20)-10° вт стоимость опресненной воды настолько снизится, что можно будет ставить вопрос о применении ее для орошения засушливых земель.

Одновременно с решением проблемы большой ядерной энергетики и увеличением мощности реакторов в СССР успешно решаются проблемы малой ядерной энергетики. Уменьшение размеров реакторов крайне важно для использования ядерного горючего в двигателях, где лимитирован вес горючего. Такие двигатели устанавливаются на подводных лодках и ледоколах дальнего плавания. Как известно, в 1959 г. в СССР вступил в строй первый в мире ледокол «Ленин» с двигателем на ядерном топливе. В течение трех лет машины ледокола «Ленин» работали без перезарядки горючего.|


I.7. Термоядерные реакции

1. Кроме реакции деления тяжелых ядер, существует еще один путь выделения ядерной энергии - синтез ядер гелия из ядер изотопов водорода. Водород имеет три изотопа: легкий водород, или протий, с атомным весом 1,008, тяжелый водород, или дейтерий, с атомным весом 2,015 и сверхтяжелый водород, или тритий, с атомным весом 3,017. Ядра этих изотопов называются соответственно протон, дейтрон (или дейтерон) и тритон и обозначаются:

1Н1 или 1p1 1H2 или 1D2, 1H3 или 1T3. Удельная энергия связи ядра гелия значительно превышает удельную энергию связи ядер изотопов водорода. Поэтому при синтезе ядер гелия из водородных ядер будет выделяться энергия. Весьма эффективной в отношении выделения энергии является следующая реакция:


Оказывается, что при этой реакции выделяется энергия, равная 17,6 Мэв.

Выделение энергии на один нуклон в реакции синтеза в несколько раз больше, чем при делении тяжелых ядер. Так, при делении ядер урана, как уже говорилось, выделяется энергия около 200 Мэв, что составляет на один нуклон 200/238^0,85 Мэв. В реакции же (46.13) на один нуклон выделяется 17,6/5w3,5 Мэв, т. е. в четыре раза больше. Еще большая энергия выделяется при синтезе ядра гелия из четырех протонов:


В этой реакции выделяется энергия, равная 26,8 Мэв, т. е, выделение энергии на одну частицу составляет 26,8/4=6,7 Мэв.

3. Для осуществления реакции синтеза, для слияния легких ядер, нужно преодолеть потенциальный барьер, обусловленный кулоновским отталкиванием одноименно заряженных ядер. Оценим качественно высоту этого барьера.

Для слияния ядер дейтронов их нужно сблизить вплотную, т. е. на расстояние между центрами, равное удвоенному радиусу ядра водорода, r~3*10-15 м. Для этого нужно совершить работу, равную электростатической потенциальной энергии ядер, находящихся на этом расстоянии друг от друга: U:=e2/4πε 0 r. Подставив числа, найдем, что высота потенциального барьера составляет примерно 0,1 Мэв. Ядра дейтрона смогут преодолеть этот барьер, если при столкновении они будут обладать соответствующей кинетической энергией. Средняя кинетическая энергия теплового движения дейтронов (3/2k Т) равна 0,1 Мэв и достаточна для преодоления потенциального барьера при T=2-109 °К, т. е. при температуре порядка миллиардов градусов. Это значительно больше температуры внутренних областей Солнца, которая оценивается примерно в 107 °К-

Однако термоядерные реакции синтеза могут происходить и при температурах меньших, чем 109 °К. Дело в том, что скорости ядер распределены по закону Максвелла, и поэтому при температуре, меньшей 109 °К, например при T~107 °К, имеется некоторая доля ядер, энергия которых превышает высоту потенциального барьера и которые, следовательно, могут начать реакцию синтеза.

Из приведенных данных видно, что реакции синтеза ядер требуют нагрева до очень высоких температур. Поэтому эти реакции называются термоядерными.

Частицы, находящиеся в «хвосте» максвелловского распределения при T~107 °К имеют энергии порядка десятков килоэлектрон-вольт, что еще, однако, значительно ниже кулоновского барьера. В ядерных реакциях заряженных частиц при обычных температурах вероятность туннельного проникновения сквозь кулоновский барьер при столкновении ядер невелика. Однако она очень быстро увеличивается с ростом энергии сталкивающихся частиц. Например, для двух ядер дейтерия эта вероятность при средней энергии частиц 1,7 кэв (соответствующей температуре 2-Ю7 °К) - превышает в 1047 раз вероятность туннельного слияния двух ядер дейтерия, обладающих средней энергией 17 эв (Т=2-105 °К). Температура 107 °К оказывается достаточной для того, чтобы начала протекать термоядерная реакция за счет туннельного слияния ядер, находящихся в «хвосте» максвелловского распределения. Кроме того, благоприятную роль для протекания термоядерных реакций играет то обстоятельство, что с повышением температуры интенсивнее происходят столкновения ядер, находящихся на «хвосте» максвелловского распределения, что способствует проникновению ядер друг в друга сквозь кулоновский потенциальный барьер.

Температура порядка 107 °К характерна для центральной части Солнца. С другой стороны, спектральный анализ излучения Солнца позволяет установить, что в составе Солнца, как и в составе многих других звезд, имеется значительная часть водорода (около 80%) и гелия (до 20%). Углерод, азот и кислород составляют не более 1% массы звезд. Впрочем, если учесть, что масса Солнца колоссальна (1,99-1030 кг), то на Солнце имеется достаточное количество этих газов. Сопоставление всех этих данных с условиями протекания термоядерных реакций привело к выводу, что термоядерные реакции должны происходить на Солнце и звездах и являться источником энергии, компенсирующим их излучение. Ежесекундно Солнце излучает энергию 8,8-1036 дж, что соответствует уменьшению его массы покоя на 4,3 млн. тонн. Полезно отметить, что удельное выделение энергии Солнца, т. е. выделение, приходящееся на единицу массы в одну секунду, оказывается при этом весьма малым, всего 1.9-10-4 дж/сек-кг. Оно составляет лишь 1% от удельного выделения энергии в живом организме в процессе обмена веществ.

Малое удельное выделение Солнцем энергии за 1 сек объясняет, почему мощность излучения энергии нашим светилом практически не изменилась за несколько миллиардов лет существования солнечной системы.

В 1938 г. было высказано предположение о возможном протекании термоядерных реакций на Солнце в форме так называемого протонно-протонного цикла. В одном из вариантов протонно-протонного цикла происходят, как считают, следующие реакции. Цикл начинается с соединения двух протонов с образованием дейтрона и испусканием позитрона и электронного нейтрино:

1p1+lPl→lD2++1eo+0ν0.

Далее дейтрон реагирует с протоном, образуя ядро легкого изотопа гелия аНе3, а избыток энергии выделяется в виде Т-излучения:

lD2+1p1→2He4+21p1.

Заметим, что позитрон, образовавшийся на первом этапе цикла, соединяясь с электроном плазмы, также дает 7-излу-чение.

С 1951 г. считают, что наиболее вероятным продолжением цикла является соединение ядер гелия аНе3 с образованием ядра гНе" (а-частицы) и двух протонов:

2He3+2He3→2Hel+21p1.

Результатом цикла является синтез водородных ядер в ядро гелия, сопровождающийся выделением энергии.

7. В 1939 г. Г. Бете рассмотрел цикл термоядерных реакций, называемый углеродно-азотным циклом или циклом Бете. В этом цикле соединение ядер водорода в ядро гелия облегчается при помощи ядер углерода 6С12, играющих роль катализаторов термоядерной реакции. Началом цикла является проникновение быстрого протона в ядро углерода 6С12 с образованием ядра неустойчивого радиоактивного изотопа азота 7N13 и с излучением γ-кванта:

6С12+1p1→7N13+γ.

С периодом полураспада 14 мин в ядре 7N13 происходит превращение 1p1+lPl→lD2++1eo+0ν0 и образуется ядро изотопа углерода 6С13:

7N13→6С13++1eo +0ν0.

Приблизительно через каждые 2,7 млн. лет ядро 6C13, захватив протон, образует ядро устойчивого изотопа азота 7N14:

6C13+1p1→7N14+γ.

Спустя в среднем 32 млн. лет ядро 7N14 захватывает протон и превращается в ядро кислорода 8O15:

7N14+1p1→8O15+γ.

Неустойчивое ядро 8O15 с периодом полураспада 3 мин испускает позитрон и нейтрино и превращается в ядро 7N15:

8O15→7N15+ ++1eo+0ν0.

Завершается цикл реакцией поглощения ядром 7N15 протона и распадом его на ядро углерода 6С12 и γ-частицу, происходящими приблизительно через 100 тысяч лет:

7N15 +1p1→6С12+ 2He4

Новый цикл начинается вновь с поглощения углеродом 6С12 протона, происходящего в среднем через 13 млн. лет. Отдельные реакции цикла отделены временами, которые с точки зрения земных масштабов времени являются непомерно большими. Однако нужно учесть, что этот цикл является замкнутым и непрерывно происходящим. Поэтому различные реакции цикла происходят на Солнце одновременно, начавшись в разные моменты времени.

Результатом одного цикла является превращение четырех протонов в ядро гелия с появлением двух позитронов и 7-излучения, к которому следует добавить излучение, возникающее при слиянии позитронов с электронами плазмы. Количество энергии, выделяющейся на одно ядро гелия, составляет 26,8 Мэв. В пересчете на грамм-атом гелия это составляет 700 тыс. квт-ч энергии. Этого количества энергии достаточно для компенсации энергии, излучаемой Солнцем. Хотя термоядерные реакции на Солнце и приводят к уменьшению на нем водорода, расчеты показывают, что количества водорода, имеющегося на Солнце, хватит для поддержания термоядерных реакций и излучения Солнца на миллиарды лет.

Из предыдущего ясно, какое большое значение имеет осуществление в земных условиях термоядерных реакций для получения энергии. Достаточно сказать, что при использовании дейтерия, содержащегося в одном литре обычной воды, в реакции термоядерного синтеза выделится столько же энергии, сколько выделится при сгорании около 350 л бензина.

Впервые условия, близкие к тем, какие реализуются в недрах Солнца, были осуществлены в СССР, а несколько' позднее в США, в водородной бомбе, где происходит самоподдерживающаяся термоядерная реакция взрывного характера. Взрывчатым веществом, в котором происходила Ц термоядерная реакция, являлась смесь дейтерия 1D2 и " трития 1H3. Необходимая для протекания реакции высокая температура была получена за счет взрыва «обычной» атомной бомбы.

Теоретически основой для получения искусственных управляемых термоядерных реакций являются реакции, происходящие в дейтериевой высокотемпературной плазме. Задача заключается, однако, не только в создании условий, необходимых для интенсивного выделения энергии в термоядерных процессах, но главным образом в поддержании этих условий. Для осуществления самоподдерживающейся термоядерной реакции нужно, чтобы скорость выделения энергии в системе, где происходит реакция, была не меньше, чем скорость отвода энергии от системы.

Расчеты показывают, что для обеспечения самоподдерживающейся управляемой термоядерной реакции необходимо довести температуру дейтериевой плазмы до нескольких сотен миллионов градусов. При температурах порядка 108 градусов термоядерные реакции обладают заметной интенсивностью и сопровождаются выделением большой энергии. Так, при температуре порядка 108 градусов мощность, выделяемая в единице объема плазмы при соединении дейтериевых ядер, составляет примерно 3 квт!м3, в то время как при температуре ~106 градусов она равна всего лишь 10-17 вт/м3.

Основной причиной потерь энергии высокотемпературной плазмой является ее огромная теплопроводность, быстро растущая (пропорционально Т'/«) при рассматриваемых высоких температурах. Отвод энергии из плазмы может происходить благодаря диффузии горячих частиц из области, где происходит реакция, на стенки аппарата, в котором находится плазма. Если плазму не теплоизолировать от контакта с любыми окружающими веществами, то ее нельзя нагреть даже до нескольких сот тысяч градусов, так как вся энергия, выделяющаяся в результате реакций синтеза, будет уходить на стенки. Иными словами, необходимо удержать плазму в заданном объеме, не допуская ее расширения.

Идея эффективной магнитной термоизоляции плазмы применительно к проблеме управляемого термоядерного синтеза была предложена в СССР А. Д. Сахаровым и И. Е. Таммом в 1950 г. Если пропустить через плазму в форме столба вдоль его оси сильный электрический ток, то магнитное поле этого тока, которое имеет форму, обычную для прямолинейного проводника, создает электродинамические силы, которые будут стремиться сжать плазменный столб. Таким образом столб плазмы окажется оторванным от стенок и стянутым в плазменный шнур (§ 12.8). Очевидно, что сжатие плазмы может происходить до тех пор, пока давление, вызванное электродинамическими силами, не уравновесится газокинетическим давлением частиц самой плазмы. На рис шнур 2 изолирован от стенок 1 магнитным полем Н. Электрический ток /, пропущенный через газ, выполняет несколько функций:

а) в начальной стадии создает плазму благодаря интенсивной ионизации;

б) стягивает плазму в шнур;

в) за счет выделения джоулева тепла и сжатия нагревает плазму до высокой температуры.

 


В первоначальных опытах, проводившихся в СССР Л. А. Арцимовичем и его сотрудниками, в дейтерии, находящемся под давлением в 0,01-0,1 мм рт. ст., с помощью батареи конденсаторов большой емкости создавался мощный импульсный разряд. Максимальная сила тока в момент разрядного импульса достигала 105-10е а при длительности нарастания тока от нуля до максимума 5-10 мксек. Возникшая плазма сначала быстро стягивалась в шнур к оси разрядной трубки. В конце сжатия температура шнура достигала 10е градусов и даже нескольких миллионов градусов.

Однако удержать плазменный шнур в таком состоянии не удается: происходят быстрые радиальные его колебания - он то расширяется, то снова сжимается. Вследствие нестабильности, неустойчивости плазмы в плазменном шнуре возникают деформации, которые изменяют геометрическую форму шнура. Результатом этого является нарушение термоизоляции, интенсивное взаимодействие плазмы со стенками, приводящее к загрязнению дейтерия веществом стенок и к быстрому охлаждению плазмы. Все это происходит за время в несколько микросекунд, сравнимое с временем разрядного импульса. К моменту, когда достигнут максимум тока, температура плазмы уже снижается по сравнению с той, которая у нее была в момент окончания первого сжатия в шнур.

На рис. 46.6 представлены две простейшие деформации плазменного шнура - его местное сужение и изгиб. Для осуществления управляемых термоядерных реакций необходимо выяснить условия, при которых высокотемпературная плазма, помещенная в магнитном поле надлежащей конфигурации, может сохранять устойчивость. Решение этого вопроса, наряду с поисками путей повышения температуры плазмы до необходимой для самоподдерживающейся реакции синтеза, является главным направлением, в котором развиваются исследования по управляемым термоядерным реакциям.

Проблема устойчивости плазмы потребовала прежде всего тщательного изучения деформаций, которые могут возникнуть в плазменном шнуре. Не вдаваясь в детали, укажем, что в случае деформации, изображенной на рис. 46.6, и, в области сужения (перетяжки) плазмы возрастает напряженность магнитного поля, а вместе с ней возрастают и электродинамические силы, стягивающие шнур в этой области. Между тем давление самой плазмы во всех ее сечениях одинаково и плазма может свободно перетекать вдоль столба. Следовательно, в месте сужения возросшее электродинамическое давление не будет уравновешиваться давлением плазмы, и сужение будет продолжаться вплоть до разрыва шнура в области первоначального сужения. Аналогично можно показать, что возникшая в Плазменном шнуре деформация изгиба будет развиваться и приведет к дальнейшему изгибанию шнура.

В настоящее время детально изучены возможные виды неустойчивости плазмы. Для стабилизации плазмы применяются различные варианты использования дополнительных внешних магнитных полей, не связанных с током, проходящим через плазму.

Страницы: 1, 2, 3, 4, 5, 6


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.