рефераты скачать

МЕНЮ


Проектирование и расчет электрического освещения

Примечания:

Способ монтажа для светильников с ртутными лампами: 1 – на трубу с резьбой 20 мм; 2 – на монтажный профиль; 3 – на крюк; 4 – на опорную поверхность; 5 – специальное крепление.

Способ монтажа для светильников с люминесцентными лампами: 1 – на трубу с резьбой 20 мм; 2 – на шинопровод; 3 – на штангах; 5 – на потолок; 6 – на стержнях; 7 – на крюк; 8 – на монтажный профиль.

Способ монтажа для светильников с лампами накаливания: 1 – на трубу с резьбой 20 мм; 2 – на монтажный профиль; 3 – на крюк; 4 – на потолок; 5 – на горизонтальную опорную поверхность; 6 – на наклонную опорную поверхность.


Основными факторами, определяющими выбор светильников являются:

а) условия окружающей среды (наличие пыли, влаги, химической агрессивности, пожароопасных и взрывоопасных зон);

б) строительная характеристика помещения (размеры помещения, в том числе его высота, наличие ферм, технологических мостиков, размеры строительного модуля, отражающие свойства стен, потолка, пола и рабочих поверхностей);

в) требования к качеству освещения.

Выбор конкретного типа светильника осуществляется по конструктивному исполнению, светораспределению и ограничению слепящего действия, экономическим соображениям.

Конструктивное исполнение светильника в значительной степени определяется уровнем защиты его от воздействия окружающей среды.

От конструктивного исполнения светильников зависит их надежность и долговечность в данных условиях среды помещения, безопасность в отношении пожара, взрыва и поражения электрическим током, а также удобство обслуживания.

В нормальных сухих и влажных помещениях допускается применения всех типов незащищенных (IP20) светильников.

В сырых помещениях также допускается применение незащищенных (IP20) светильников, но при условии выполнения корпуса патрона из изоляционных и влагостойких материалов.

В особо сырых помещениях и в помещениях с химически активной средой рекомендуется применение светильников со степенью защиты не ниже IP22, в пыльных помещениях – не ниже IP44.

В жарких помещениях – не ниже IP20, причем в светильниках с люминесцентными лампами рекомендуется применение амальгамных ламп.

В пожароопасных зонах применяются светильники с минимальными допустимыми степенями защиты, указанными в табл. 2.2.


Таблица 2.2 Минимальные допустимые степени защиты светильников в зависимости от класса пожароопасной зоны

Источники света, устанавливаемые в светильниках

Степень защиты светильников для пожароопасной зоны класса

П-I

П-II

П-IIa

П-III

Лампы накаливания

IP53

IP53

2'3

2'3

Лампы ДРЛ

IP53

IP53

IP23

IP23

Люминесцентные лампы

5'3

5'3

IP23

IP23


Примечание. Допускается изменять степень защиты оболочки от проникновения воды (2-я цифра обозначения) в зависимости от условий среды, в которой устанавливаются светильники.

Во взрывоопасных зонах могут применяться светильники при условии, что уровень их взрывозащиты или степень защиты соответствует табл. 2.3 или является более высокими.


Таблица 2.3 Допустимый уровень взрывозащиты светильников в зависимости от класса взрывоопасной зоны

Класс взрывоопасной зоны

Уровень взрывозащиты

B-I

Взрывобезопасные

B-Ia, B-Iг

Повышенной надежности против взрыва

В- Iб

Без средств взрывозащиты. IP53

В-II

Повышенной надежности против взрыва

В-IIа

Без средств взрывозащиты. IP53


В [1, 12 и др.] приведены подробные рекомендации выбора светильников по конструктивному исполнению.

Если существующая номенклатура светильников представляет возможность применения в помещении не единственного, а нескольких возможных по конструктивному исполнению светильников, из них почти всегда целесообразно выбрать тот, который обладает наиболее высокой эксплуатационной группой [2] (табл. П7), характеризующей способность светильника сохранять в процессе работы высокие светотехнические качества. Такой подход позволяет в определенных условиях [2, табл. 3] принять меньшие значения коэффициентов запаса, это в свою очередь приводит к снижению установленной мощности источников света, уменьшению расхода электроэнергии.

Правильный выбор светильника по светораспределению обуславливает экономичное использование светового потока источника света, приводит к снижению установленной мощности осветительной установки. При равных условиях предпочтительнее выбирать светильники с более высоким КПД, несмотря на их более высокую стоимость. Эти дополнительные затраты окупаются за счет экономии электроэнергии.

В производственных помещениях с низкими коэффициентами отражения стен, потолков целесообразно применение светильников прямого света класса П со светораспределением типа К (концентрированная) при высоких потолках (более 6-8 м), с меньшей высотой потолков – со светораспределением типа Д (косинусная), реже Г (глубокая). С увеличением высоты помещения применяемый светильник должен иметь большую степень концентрации светового потока (К, Г) и наоборот, в низких помещениях рекомендуется использовать светильники с более широким светораспределением (Д, Г).

При высоких отражающих свойствах стен и потолков производственных помещений (светлые потолки и стены) целесообразно применение светильников преимущественно прямого света класса Н.

При высоких отражающих свойствах пола или рабочих поверхностей преимущество получают светильники класса П, поскольку в этом случае за счет отражения в верхнюю полусферу попадает достаточно светового потока для создания приемлемого зрительного комфорта.

Светильники преимущественно прямого света класс П и рассеянного света класса Р с кривыми светораспределения Д (косинусная) и Л (полуширокая) целесообразно применять для освещения административных, учебных помещений, лабораторий и т.п.

Светильники классов В (преимущественно отраженного света) и О (отраженного света) применяют для создания архитектурного освещения производственных помещений, гражданских зданий. Для наружного освещения – светильники с кривой силы света Ш (широкая).

Учет при выборе светильников слепящего их действия осуществляется по показателю ослепленности, который нормируется [2] и сравнивается с фактическим показателем ослепленности. Расчет этого показателя приведен в [11], но на практике при проектировании осветительных установок в связи с трудностью расчета этого показателя эта характеристика учитывается косвенно минимально допустимой высотой подвеса светильников.

Выбор светильников по критерию экономичности выполняется по минимуму приведенных затрат. Однако учитывая, что основной составляющей годовых эксплуатационных расходов являются затраты на электроэнергию, можно с некоторым приближением оценивать экономичность светильника по критерию энергетической экономичности (Ээ). Под энергетической экономичностью понимается отношение нормируемой (минимальной) освещенности (Еmin) к удельной мощности Руд:


,                                                   (2.5)


где Руд – удельная мощность, равная отношению установленной мощности ламп к площади освещаемого помещения.

Рост энергетической экономичности в соответствии с выражением (2.5), является следствием уменьшения удельной установленной мощности источников света, необходимой для создания заданной освещенности.

Было установлено, что энергетическая экономичность является функцией комбинированного аргумента , где Еmin – освещенность по нормам, Кз – коэффициент запаса, Нр – расчетная высота подвеса светильников над рабочей поверхностью (см. рис. 2.3).

Это позволяет определить области, целесообразного с экономической точки зрения, использования различных типов светильников. В [13] для некоторых типов светильников приведены наибольшие и наименьшие мощности ламп и соответствующие им значения аргумента . Если при проектировании фактическое значение аргумента  будет меньше нижнего предела для данного светильника, то применять его не рекомендуется. При фактических значениях аргумента, больших верхнего предела для данного светильника, применение его может быть допущено при условии отсутствия другого, более экономичного светильника.

Как видно из аргумента энергетическая экономичность светильников в значительной степени зависит от принимаемой при проектировании расчетной высоты подвеса светильников (Нр); которая в определенной степени зависит от высоты помещения.

При малой высоте (до 6 м) добиться качественных показателей, таких как минимальная неравномерность освещения, допустимая пульсация и ослепленность, возможно только с помощью большого числа светильников с относительно малой единичной мощностью источника света (ЛН и ЛЛ). В высоких помещениях экономически выгодней применять мощные источники света (ДРЛ, ДРИ, ДНаТ) и малое число светильников, каждый из которых должен иметь оптимальное светораспределение для конкретного варианта.

Поэтому выбор типа светильников выполняется одновременно с выбором их схем размещения на плане освещаемого помещения.

Высота освещаемого помещения определяет и экономичный тип светораспределения светильников.

Для каждой типовой кривой силы света (типа светильника) существует наивыгоднейшее относительное расстояние между светильниками , при которой обеспечивается наибольшая равномерность распределения освещенности, а также наивыгоднейшее относительное расстояние между светильниками при которой обеспечивается максимальная энергетическая экономичность. Под относительным расстоянием между светильниками понимается отношение расстояние между ними (L) к расчетной высоте подвеса светильников над рабочей поверхностью (Нр) (табл. П.8, П.9).

Выбранные светильники должны быть расположены и установлены таким образом, чтобы обеспечивалось [6]:

а) безопасность и удобный доступ к светильникам для обслуживания;

б) создание нормированной освещенности наиболее экономичным путем;

в) соблюдение требований к качеству освещения (равномерность освещения, направление света, ограничение вредных факторов: теней, пульсаций освещенности, прямой и отраженной блескости;

г) наименьшая протяженность и удобство монтажа групповой сети;

д) надежность крепления светильников.


2.3.2 Высота подвеса светильников

Высота подвеса светильников над освещаемой поверхностью (НР) – расчетная высота подвеса светильников (рис. 2.3) в значительной степени определяет характеристику и технико-экономические показатели проектируемой осветительной установки.

От ее величины зависит установленная мощность источников света, размещение светильников на плане; высота подвеса определяет качественные показатели освещения, выбор светильников по светораспределению, экономическим соображением.


 









Рис. 2.3. Размещение светильника по высоте помещения: Н – высота помещения; Нр – высота подвеса светильника над освещаемой поверхностью; hс – высота свеса светильника; hр – высота рабочей поверхности


В связи с тем, что ряд показателей ОУ регламентируется нормами искусственного освещения, высота подвеса светильников принимается одновременно с решением других задач проектирования – выбора типа светильников, их размещения и обслуживания и др. Минимальная высота подвеса светильников ограничена условием ослепляющего их действия (нормированный показатель ослепленности). Максимальная высота ограничена размерами помещения и условиями обслуживания светильников.

При выборе высоты подвеса учитываются строительные особенности помещений – наличие ферм, технологических мостиков, размеры строительного модуля; одновременно рассматриваются способы прокладки и монтажа проводов и кабелей осветительной сети.

В помещениях ограниченной высоты светильники устанавливаются либо на свесах, либо непосредственно на потолке и обслуживаются с лестниц или стремянок. По условию доступности высота подвеса светильников не должна превышать 5 м от пола, причем светильники не должны располагаться над крупным оборудованием, приямками и в других местах, где невозможна установка лестниц или стремянок.

В помещениях с ферменным перекрытием чаще всего светильники общего освещения устанавливаются на фермах. В этих случаях они могут обслуживаться с мостовых кранов, причем светильники должны быть размещены на уровне не менее 1,8 м над настилом площадки обслуживания на кране или же на уровне нижнего пояса ферм.

При проектировании осветительных установок необходимо предусматривать, чтобы возможно большая часть светильников была доступна для обслуживания с пола с помощью переносных приспособлений (табуретов, лестниц и стремянок).

К числу указанных мер относятся [6]:

а) установка светильников с помощью кронштейнов на стенах или колоннах на высоте не более 5 м;

б) подвеска светильников на тросах, коробах, трубах, монтажных профилях и т.п. на высоте не более 5 м или же на тросах с опускными приспособлениями;

в) установка светильников на мостиках или площадках, предназначенных для обслуживания шинопроводов, тельферов и т.п., а также установка на крупном технологическом оборудовании;

г) использование технологических площадок верхних отметок для установки на них светильников, освещающих нижние отметки.

Кроме того, в соответствии с нормами [6] рекомендуется принимать следующие высоты установки светильников, м:

2,1 – в электропомещениях, при установке светильников вблизи открытых токоведущих частей;

не более 3,5 – на технологических площадках, мостиках, переходах и т.п. при установке светильников на стенах;

2,5 – на технологических площадках, мостиках, переходах и т.п. при установке светильников на стойках вдоль ограждений;

на уровне настила ± 0,5 – на мостиках для обслуживания светильников.

Подвесные светильники общего освещения, устанавливаемые на потолках или фермах, как правило, должны крепиться к последним со свесом не более 1,5м. Увеличение свеса этих светильников может предусматриваться в случаях:

а) если это необходимо в целях обеспечения доступа к светильникам для обслуживания;

б) когда это позволяет улучшить экономические показатели установки без ухудшения качества освещения.

При установке светильников с увеличенным свесом конструкция их крепления должна ограничивать возможность раскачивания светильников под воздействием потоков воздуха.

В общем случае расчетная высота подвеса светильников определяется по выражению:


Hp = H - (hc + hp), (2.6)


где    Н – высота помещения;

hc – высота свеса светильника;

hp – высота рабочей поверхности, при отсутствии конкретной величины принимается равной 0,8м.


2.3.3 Схемы размещения светильников

При общем равномерном освещении, а по возможности также и при локализованном освещении, светильники рекомендуется располагать по вершинам квадратных, прямоугольных (с отношением большей стороны прямоугольника к меньшей не более 1,5) или ромбических (с острым углом при вершине ромба близким к 600) полей.

Светильники с люминесцентными лампами следует преимущественно размещать рядами, параллельными стенам с окнами. Иное расположение допускается:

а) в узких помещениях с окнами на торцевых стенах;

б) в случае, когда это диктуется размещением производственного оборудования.

Ряды выполняются непрерывными или с разрывами (в свету), не превышающими 0,5 расчетной высоты подвеса светильников.

При общем равномерном освещении расстояние от крайних светильников или рядов светильников до стен следует принимать в помещениях, предназначенных для работы примерно втрое меньшим, а в остальных помещениях – вдвое меньше, чем расстояние между рядами светильников или стороны поля. При размещении рабочих мест непосредственно у стен или колонн крайние ряды светильников следует в пределах целесообразности приближать к стенам или колоннам, в частности устанавливать светильники на кронштейнах.

Расстояние между соседними светильниками (L) или их рядами зависит от расчетной высоты подвеса светильников (Hр) и светораспределения (типа светильника). Как было показано в разделе 2.3.1 (выбор светильников по экономическим соображениям) для каждого типа светильников (стандартной кривой силы света) существует наивыгоднейшее относительное расстояние (табл. П8, П9). Тогда


, (2.7)

где  - наивыгоднейшее относительное расстояние между светильниками;

Нр – расчетная высота подвеса светильников.


При расположении светильников в вершинах прямоугольника L может быть рассчитана как среднегеометрическое расстояние между соседними светильниками:


, (2.8)

где Lа Lb – расстояние между светильниками по длине и ширине помещения.


В производственных помещениях с типовыми строительными модулями (в основном это высокие помещения), характеризующимися стандартными размерами шага колонн (обычно 6м) и шириной пролета (6, 12, 18 и 24 м), светильники размещаются обычно на фермах в виде продольных рядов. При этом расстояние между светильниками в ряду получается одинаковым и равным шагу колонн 6 м (реже 12 м). Такое расположение светильников не всегда дает возможность достичь равномерности освещения, что в свою очередь ведет к перерасходу электроэнергии.

В этих случаях рекомендуется применение так называемых неравномерных схем размещения светильников [9]. Такие схемы характеризуются неодинаковым количеством светильников на соседних фермах, которое получается либо за счет того, что допускается разное число светильников в одной световой точке, либо за счет неодинаковых расстояний между светильниками в рядах. При трех или четырехрядных схемах средние ряды выполняют менее загруженными, чем крайние, либо расстояние между рядами в центральной части помещения при четырехрядной схеме в 1,3…1,5 раза делается больше, чем расстояние между крайними рядами. Такие неравномерные схемы размещения светильников уменьшают неравномерность освещенности, а, следовательно, и расход электроэнергии.


Рис. 2.4. Схема эффективного размещения светильников в пролетах производственных зданий:

o - светильник, ´ – колонна, L – ширина пролета, l – шаг колонн, 1¸20 – номера схем размещения; для 1¸6 – В/А = 4; для 7¸16 В/А = 3…3,5; для 17¸20 В/А = 2…2,5; С/В = 1,3…1,5


На рис. 2.4 приведены рекомендуемые схемы размещения светильников с типовыми строительными модулями. Конкретная схема размещения может быть принята по табл. П.10 [9]. В данной таблице приводится строительный модуль помещения, принятые в проекте: высота подвеса светильников, нормируемая освещенность, кривая светораспределения светильников – по которым определяется рекомендуемая схема размещения светильников. Может быть по табл. П.10 решена и обратная задача – определение экономичного типа светораспределения светильников (выбор светильника) по высоте подвеса светильников, схеме их размещения и нормируемой освещенности.

Таким образом, при проектировании ОУ конкретного помещения вначале выбирается целесообразный ИС (п. 2.1), нормируемая освещенность и коэффициент запаса (п. 2.2). Далее выбирается тип светильника (п. 2.3.1) и высота его подвеса (п. 2.3.2). Если в качестве ИС приняты лампы ДРЛ или ДРИ и помещение, в котором проектируется ОУ имеет ферменные перекрытия, то в зависимости от величины нормируемой освещенности, строительного модуля помещения с учетом предварительно предполагаемой высоты подвеса светильников по табл. П.10 определяется схема размещения светильников и ориентировочный тип их светораспределения, при которых обеспечивается минимум затрат и расхода электроэнергии на освещении. При выборе схемы размещения светильников возможна корректировка высоты подвеса светильников.

Если в качестве источников света приняты ЛЛ или ЛН, то выбор схем их размещения выполняется в соответствии с п. 2.3.3 (по  - относительному расстоянию между светильниками.


2.4 Светотехнический расчет освещения


2.4.1 Общие рекомендации по светотехническим расчетам

Светотехнические расчеты позволяют выполнить следующее:

а) определить количество и единичную мощность источников света осветительной установки, обеспечивающей требуемую освещенность в помещении (на рабочей поверхности);

Страницы: 1, 2, 3, 4


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.