рефераты скачать

МЕНЮ


Поверочный тепловой расчет парового котла Е-420-13,8-560 (ТП-81) на сжигание Назаровского бурого угля

Змеевики потолочного пароперегревателя за 3-ей ступенью конвективного пароперегревателя образуют конвективную петлю (1-ая часть КПП).

Ширмовый пароперегреватель

Из выходных камер потолочного пароперегревателя пар поступает во входные смешивающие коллектора «холодных ширм» (по 6-ти трубам диаметром 159х16 мм).

Далее пар поступает во входные коллектора 10-ти «холодных ширм» (10 труб диаметром 133х10 мм).

Каждая ширма- это 33 параллельно включенных змеевика (диаметр 32х4 мм, сталь 12Х1МФ).

Диаметр входного и выходного коллектора ширм 159х16 мм, поверхность нагрева «холодных ширм» 312м2.

Из выходных коллекторов ширм пар поступает в пароохладитель №1 (по 10-ти трубам диаметром 133х10 мм), - где происходит снижение температуры перегретого пара и первая переброска пара по ширине газохода.

Из выходного коллектора пароохладителя пар поступает во входные смешивающие коллекторы «горячих ширм» (по 6-ти трубам диаметром 156х16 мм) и дальше - в выходные коллекторы «горячих ширм» (по 10-ти трубам диаметром 133х10 мм).

Поверхность нагрева «горячих ширм» - 312м2.

Диаметр выходного коллектора - 273х26 мм.

Конвективный пароперегреватель

Из ширмового пароперегревателя пар поступает в конвективный пароперегреватель (по 6-ти трубам диаметром 156х16 мм) первой, затем второй, третьей и четвертой ступеней КПП.

С целью уменьшения тепловой и гидравлической неравномерности конвективная часть разделена на три последовательно включенные ступени, которые расположены в горизонтальном соединительном газоходе. Каждая ступень состоит из 174 пакетов параллельно включенных змеевиков, расположение змеевиков – коридорное с поперечным шагом 80 мм и продольным шагом 60 мм.

Диаметры труб:

Первая ступень (2 часть КПП 1) - 32х5 мм;

Вторая ступень (3 часть КПП) - 32х5 мм;

Третья ступень (4 часть КПП) - 32х6 мм;

Материал труб сталь 12Х1МФ.

Для выравнивания температуры пара по ширине газохода в пароохладителях №2 и №3 (после первой и второй ступеней КПП), осуществляется переброс пара по ширине газохода.

Площадь поверхности нагрева: 1 ступень - 800 м2; 2 ступень - 1340 м2; 3 и 4 ступеней - по 1025 м2.

Максимальная температура металла в обогреваемой зоне не должна превышать значений указанных в таблице.

Регулирование температуры перегретого пара

Для регулирования температуры перегретого пара предусмотрена схема с 3-мя последовательно включенными впрыскивающими пароохладителями.

Расчетное снижение температуры перегретого пара составляет:

1 впрыск - 6 °С; 2 впрыск - 11 °С; 3 впрыск - 2 °С

Температура перегрева для пароперегревателя возрастет при:

-                     увеличении нагрузки,

-                     снижении температуры питательной воды,

-                     увеличении избытка воздуха в топке,

-                     переходе на сжигание более влажного топлива,

-                     шлаковании экранных труб,

-                     затягивании факела в верх топки,

-                     - при переходе на сжигание более влажного топлива.

В связи с тем, что пароперегреватель котла ТП-81 имеет обширную конвективную часть, большое влияние на температуру перегретого пара оказывает величина избытка воздуха в топке.

Водяной экономайзер. Расположен в конвективной шахте (опускной газоход). Компоновка 2-х ступенчатая.

По ходу газов первой идет 2-ая ступень – поверхность нагрева 870 м2, а затем, (после воздухоподогревателя 2 ступени); идет 1-я ступень - поверхность нагрева 2580м2.

Водяной экономайзер крепится на пустотелых балках, охлаждаемых воздухом от дутьевого вентилятора.

Для охлаждения водяного экономайзера в период пусков предусмотрена линия рециркуляции ВЭ - барабан, соединяющая входные коллекторы экономайзера с водяным пространством барабана котла.

Между выходными коллекторами 1- ой ступени и входными коллекторами 2-ой ступени смонтирована дренажная линия (опорожнение 2-ой ступени экономайзера).

Шаги труб, мм (S1 x S2): 1 ступень - 80х49; 2 ступень - 85х60

Живое сечение по газам, м2: 1 ступень - 36,8; 2 ступень - 34,0

Живое сечение по воде, м2: 1 ступень - 0,212; 2 ступень - 0,100

Поверхности нагрева м2: 1 ступень - 2580; 2 ступень – 870

Водяной экономайзер изготовлении из труб диаметром 25х3,5, материал труб сталь 20; двухступенчатая компоновка хвостовых поверхностей нагрева, т.е. пакеты водяного экономайзера и воздухоподогревателя установлены в «рассечку».


Схема пароперегревателя котла ТП-81

Воздухоподогреватель трубчатый, двухступенчатый. По ходу газов первой идет 2-ая ступень воздухоподогревателя поверхность нагрева которой 9180 м2, диаметр труб 51х1,5 мм, сталь 3. За 2-ой ступенью воздухоподогревателя следует I ступень водяного экономайзера, а далее - 1 ступень воздухоподогревателя с поверхностью нагрева 19800 м2, диаметр труб 40х1,5 мм сталь3.

Весь воздухоподогреватель изготовлен в виде отдельных секций, состоящих из труб, скрепленных трубными досками: верхняя ступень имеет 12 секций, нижняя - 24 секции.

Первая по ходу воздуха ступень выполнена шестипоточной по газу и воздуху и четырехходовой по воздуху. На рис. 8.5. представлена компоновка воздухоподогревателя котла ТП-81.

Вторая ступень - двухпоточная по газу и воздуху и одноходовая по воздуху.

Шаги труб, мм (S1 x S2)

1-я ступень 62х40,5

2-я ступень 78х51

Живое сечение по газам, м2

1-я ступень 17,8

2-я ступень 21,5

Живое сечение по воздуху, м2

1-я ступень 25,1

2-я ступень 21,8


Упрощенная схема воздухоподогревателя котла ТП-81

1-вход воздуха; 2-трубные секции; 3-перепускной короб между нижними и верхними секциями первой ступени ВП; 4-короб, направляющий воздух из первой ступени во вторую; 5-трубные секции второй ступени ВП

 

3. Исходные данные для расчета

Метод последовательных приближений;

Топливо: Итатское месторождение, Канско-Ачинского бассейна.


=130 0С; =230 0C; =30 0C


Расчетные характеристики камерных топок при Д≥75т/ч при сжигании твердых топлив.


Таблица 1.

Вид

Топочного

устройства



Топливо

Коэффиц.

избытка

воздуха на выходе из топки -

Допустим.

тепловая нагрузка объема по услов. горения

()

Потеря тепла от хим. недожога


Потеря тепла от механичес. недожога

Доля уноса золы из топки,

Камерная

топка с тв. удалением

шлака.


Бурый уголь



1,20



185



0



0,5-1



0,95


Присосы воздуха по газоходам:

∆αпп=0,01; ∆αвэ=0,02(на каждую ступень);

∆αвп=0,03(на каждую ступень);

∆αт=0,05; ∆αпл=0,04


Расчет объемов воздуха и продуктов сгорания

Расчет объемов воздуха и продуктов горения ведется на 1 кг рабочего топлива (твердого и жидкого) или на 1 м3 газового топлива, при нормальных условиях (0 0С и 101,3 кПа).

Теоретический объем сухого воздуха, необходимого для полного сгорания топлива при α=1 для твердого и жидкого топлив определяется по формуле Vно,в=(cr + 0,375∙sr)+0,265hr – 0,0333∙or;

Теоретические объемы продуктов горения (при α=1) для твердых и жидких топлив:  = 0,0186∙(cr+0,375∙ sr);


= 0,79Vно,в+0,008∙Nr;

 = 0,111∙ hr+0,0124∙Wrр+0,0161∙ Vно,в;

Vно,г =  + + ;


Расчет действительных объемов продуктов сгорания по газоходам котла при избытке воздуха α >1 ведется по формулам: (сведены в табл. 5.)

Объем водяных паров

Объем дымовых газов

Объемные доли 3-х атомных газов

Безразмерная концентрация золы в дымовых газах, кг/кг


μзл=;


где аун- доля золы топлива, уносимой газами.

Масса продуктов сгорания, кг/кг


;


Расчет теоретических объемов воздуха и продуктов сгорания для барандатского угля:


Vно,в=(cr + 0,375∙sr)+0,265hr – 0,0333∙or=

0,0889∙(29,55+0,375∙0,65)+0,265∙3,86-0,0333∙19=3,038864;

 = 0,0186∙(cr+0,375∙ sr)= = 0,0186∙(29,55+0,375∙0.65)= 0,55416;

= 0,79Vно,в+0,008∙Nr=0,79∙3,038864+0,008∙0,64= 2,40582;

 = 0,111∙ hr+0,0124∙Wrр+0,0161∙ Vно,в= 0,960986;

Vно,г =  + + =0,55416+2,40582+0,960986=3,920966;


Энтальпия воздуха и продуктов сгорания (α=1) определяется по формулам:


·                   для воздуха: Ioв= Vно,в∙(С )в

·                   для дымовых газов:

Ioг= VRO ∙(С)СО+Vно,N ∙(С)N +Vн o,H O ∙(С) H O,

·                   для золы:  


Энтальпия продуктов сгорания при избытке воздуха α>1 определяется по формуле: Iг = Ioг + (α -1) ∙ Ioв + Iзл,

Расчет теоретических и действительных значений энтальпий сведен в таблицу. 6.


4. Расчет тепловой баланс и КПД котла


Составление теплового баланса котельного агрегата заключается в установлении равенства между поступившим в агрегат количеством тепла, называемым располагаемым теплом, и суммой полезно использованного тепла и тепловых потерь. На основании теплового баланса вычисляется КПД и необходимый расход оплива.

По рекомендации расчет теплового баланса ведем в форме

Таблица 3

п/п

Наименование величины

Обозна-

чение

Размер-

ность

Формула или обоснование

Расчет

1

Располагаемое тепло топлива

Qрр

кДж/кг

Qрр ≈ Qнr


13030

2

Температура уходящих газов

Принята предварительно

130

3

Энтальпия уходящих газов

IУХ

кДж/кг

Таблица.2.

869,7

4

Температура холодного воздуха

t0 ХВ

Задана.

30

5

 Энтальпия холодного воздуха

I0ХВ

 кДж/кг

Таблица. 2.

165,328

6

Потери тепла:

от химического недожога

q3

%

[табл. 3.1.]

0

7

от механического недожога

q4

%

[табл. 3.1.]

0,5

8

в окружающую среду

q5

%

[ рис. 4.1.]

0,4

9

с уходящими газами

q2

%

4,758

10

Доля золы в шлаке

а Ш Л

-

(1-аун)

0,05

11

Температура сухого шлака

t Ш Л

 6000С

600

12

Энтальпия золы

Iзл

кДж/кг

Форм3.3

38,836

13

Потеря с физическим теплом шлаков

q6

%

 

0,0157

14

Сумма тепловых потерь

Σqпот

%

q2 +q3 + q4 +q5 +q6

5,67

15


Коэффициент полезного действия котельного агрегата (брутто)

%

100- Σqпот

94,3

16

Давление перегретого пара за котельным агрегатом

РПП

МПа

Задано

13,8

17

Температура перегретого пара

t ПП

Задано

560

18

Энтальпия перегретого пара

iПП

кДж/кг

Задано

3489,5

19

Температура питательной воды

t ПВ

Задано

230

20

Энтальпия питательной воды

iПВ

кДж/кг

Задано

990,2

21

Тепло, полезно используемое в котельном агрегате

Q КА

кДж/кг

1095,546

22

Полный расход топлива

B

 (кг/с)

24,74

23

Расчетный расход топлива

Bp

 (кг/с)

 


24,62

24

Коэффициент сохранения тепла

-

0,996


Для данной марки и модификации котла достаточно одного слагаемого из формулы:



=,


где -количество выработанного перегретого пара, кг/с;

- удельная энтальпия перегретого пара, кДж/кг;

После расчета теплового баланса приступаем к расчету воздухоподогревателя первой ступени.


5. Конвективная шахта

Конвективная шахта представляет собой опускной газоход с размещенными в ней в рассечку, водяным экономайзером и трубчатым воздухоподогревателем. Низкотемпературные поверхности нагрева имеют двухступенчатую схему расположения. Кубы водяного экономайзера и воздухоподогревателя имеют «горячий» каркас и с основным каркасом не связаны. Такая конструкция дает возможность осуществить приварку этих блоков друг к другу. Сплошная заварка всех сочленений блоков устраняет присосы воздуха и повышает тем самым экономичность котла. Тепловое расширение конвективной шахты происходит снизу вверх, стык между верхними пакетами воздухоподогревателя и верхним водяным экономайзером уплотняется линзовым компенсатором.

Расчет первой ступени трубчатого воздухоподогревателя

Расчет трубчатого воздухоподогревателя I

 

Таблица 4

№ п/п

Наименование величины

Обозначение

Размерность

Формула или обоснование

Расчет

 

1

Диаметр труб

d

мм

По конструкт. характеристикам

40×1,5

 

2

Шаги труб

- поперечный

- продольный

S1

S2

мм

По конструкт. характеристикам

60

40,5

 

3

Относительные шаги

- поперечный шаг

- продольный шаг

σ1

σ2


мм

мм


S1/d

S2/d

1,55

1,0125

 

4

Число труб в ряду:

- поперек хода

- по ходу воздуха

Z1

Z2

шт.

шт.


По конструктивным характеристикам

156

35

 

5

Живое сечение для прохода газов

м2

Характер.

17,8

 

6

Живое сечение для прохода воздуха

м2

Характер.

9,31

 

7

Поверхность нагрева

H

м2

Характер.

12315

 

8

Температура уходящих газов

˚С

Принята с последующим уточнением

130

 

9

Энтальпия

I//ух

кДж/кг

I –табл.

833.4155

 

10

Температура газов на входе в ВП

˚С

Принимается с последующим уточнением

250

300

 

11

Энтальпия

I/вп

кДж/кг

табл. 6

по α//эк 1.3

1434.1

1728.42

 

12

Температура холодного воздуха

tхв

˚С

Задана

30

 

13

Энтальпия

Iхв

кДж/кг

табл. 6


112,845

 

14

Тепловосприятие ступени по балансу

Qб 1,2

кДж/кг

φ(I/ - I// + ΔαI0хв)

603,7

896,1

 

15

Присос воздуха в топку

ΔαT

-

таблица 3.2[1]

0,05

 

16

Присос воздуха в пылесистему

Δαпл

-

таблица 3.2[1]

0,04

 

17

Отношение количества горячего воздуха к Vнo,хв

βгв

-

αT - ΔαT - Δαпл

1,15

 

18

Коэффициент избытка воздуха на выходе из ВП

β//вп

-

1,05

 

19

Энтальпия горячего воздуха на выходе из ступени

I//гв

кДж/кг

683,5

934,6

 

20

Температура горячего воздуха на выходе из ступени

t//гв

˚С

 табл. 6

124,026

169,59

 

21

Средняя температура воздуха

t

˚С

78,5

99,8

 

22

Средняя температура газов

˚С

190

215

 

25

Средняя скорость газов

м/с

11,46

12,1

 

26

Коэффициент теплоотдачи с газовой стороны

α2

рисунок 5.6[1]

38

40

 

27

Средняя скорость воздуха

м/с

4,03

4,27

28

Коэффициент теплоотдачи с воздушной стороны

α1

рисунок 5.5[1]

48,45

49,82

29

Коэффициент использования поверхности нагрева

ξ

-

таблица 5.5[1]


0,85

 

30

Коэффициент теплопередачи

k

19,95

18,86

31

Температурный напор на входе газов

Δt/

˚С

/ - t//

125,9

130,41

 

32

Температурный напор на выходе газов

Δt//

˚С

// - t0хв

100

 

33

Температурный напор при противотоке

Δtпрот

˚С

112,95

115,2

34

Больший перепад температур

τб

˚С

t// - t/

94,026

139,59

 

35

Меньший перепад температур

τм

˚С

/ - //

120

170

36

Параметр

Р

-

0,545

0,629

37

Параметр

R

-

0,78

0,82

38

Коэффициент

ψ

-

П. 5.3 рис. 5.15 [1]

0,65

 0,65

39

Температурный напор

Δt

˚С

ψ Δtпр

73,41

74,88

40

Тепловосприятие по уравнению теплопередачи

QT

кДж/кг

1178

1136

Страницы: 1, 2, 3, 4, 5


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.