рефераты скачать

МЕНЮ


Потери электроэнергии в распределительных электрических сетях


1.4 Климатические потери электроэнергии


Корректировка с погодными условиями существует для большинства видов потерь. Уровень электропотребления, определяющий потоки мощности в ветвях и напряжение в узлах сети, существенно зависит от погодных условий. Сезонная динамика зримо проявляется в нагрузочных потерях, расходе электроэнергии на собственные нужды подстанций и недоучете электроэнергии. Но в этих случаях зависимость от погодных условий выражается в основном через один фактор - температуру воздуха.

Вместе с тем существуют составляющие потерь, значение которых определяется не столько температурой, сколько видом погоды. К ним прежде всего, следует отнести потери на корону, возникающую на проводах высоковольтных линий электропередачи из-за большой напряженности электрического поля на их поверхности. В качестве типовых видов погоды при расчете потерь на корону принято выделять хорошую погоду, сухой снег, дождь и изморозь (в порядке возрастания потерь).

При увлажнение загрязненного изолятора на его поверхности возникает проводящая среда, (электролит), что способствует существенному возрастанию тока утечки. Эти потери происходят в основном при влажной погоде (туман, роса, моросящие дожди). По данным статистики годовые потери электроэнергии в сетях АО-энерго из-за токов утечки по изоляторам ВЛ всех напряжений оказываются соизмеримыми с потерями на корону. При этом приблизительно половина их суммарного значения приходится на сети 35 кВ и ниже. Важно то, что и токи утечки, и потери на корону имеют чисто активный характер и поэтому являются прямой составляющей потерь электроэнергии.

Климатические потери включают:

Потери на корону. Потери на корону зависят от сечения провода и рабочего напряжения (чем меньше сечение и выше напряжение, тем больше удельная напряженность на поверхности провода и тем больше потери), конструкции фазы, протяженности линии, а также от погоды. Удельные потери при различных погодных условиях определяют на основании экспериментальных исследований. Потери от токов утечки по изоляторам воздушных линий. Минимальная длина пути тока утечки по изоляторам нормируется в зависимости от степени загрязненности атмосферы (СЗА). При этом приводимые в литературе данные о сопротивлениях изоляторов весьма разнородны и не привязаны к уровню СЗА.

Мощность, выделяющуюся на одном изоляторе, определяют по формуле, кВт:


, (1.11)


где Uиз - напряжение, приходящееся на изолятор, кВ;

Rиз - его сопротивление, кОм.

Потери электроэнергии, обусловленные токами утечки по изоляторам ВЛ, можно определить по формуле, тыс. кВт-ч:


, (1.12)


где Твл - продолжительность в расчетном периоде влажной погоды

(туман, роса и моросящие дожди);

Nгир - число гирлянд изоляторов.

Далее рассмотрим методы расчета потерь электроэнергии.


2. Методы расчета потерь электроэнергии


2.1 Методы расчета потерь электроэнергии для различных сетей


Точное определение потерь за интервал времени Т возможно при известных параметрах R и ΔРх и функций времени I (t) и U (t) на всем интервале. Параметры R и ΔРх обычно известны, и в расчетах их считают постоянными [2]. Но при этом сопротивление проводника зависит от температуры.

Информация о режимных параметрах I (t) и U (t) имеется обычно лишь для дней контрольных замеров. На большинстве подстанций без обслуживающего персонала они регистрируются 3 раза за контрольные сутки. Эта информация является неполной и ограничено достоверной, так как замеры проводятся аппаратурой с определенным классом точности и не одновременно на всех подстанциях.

В зависимости от полноты информации о нагрузках элементов сети для расчетов нагрузочных потерь могут использоваться следующие методы:

Методы поэлементных расчетов, использующие формулу:


, (2.1)


где k - число элементов сети;

Iij - токовая нагрузка i-го элемента сопротивлением Ri в

момент времени j;

Δt - периодичность опроса датчиков, фиксирующих

токовые нагрузки элементов.

Методы характерных режимов, использующие формулу:


, (2.2)


где ΔРi - нагрузочные потери мощности в сети в i-м режиме

продолжительностью ti часов;

n - число режимов.

Методы характерных суток, использующие формулу:


, (2.3)


где m - число характерных суток, потери электроэнергии за каждые из которых, рассчитанные по известным графикам нагрузки

в узлах сети, составляют ΔWнci,

Дэкi - эквивалентная продолжительность в году i-го характерного

графика (число суток).

4. Методы числа часов наибольших потерь τ, использующие формулу:


, (2.4)


где ΔРmax - потери мощности в режиме максимальной нагрузки сети.

5. Методы средних нагрузок, использующие формулу:


, (2.5)


где ΔРсp - потери мощности в сети при средних нагрузках узлов

(или в сети в целом) за время Т;

kф - коэффициент формы графика мощности или тока.

6. Статистические методы, использующие регрессионные зависимости потерь электроэнергии от обобщенных характеристик схем и режимов электрических сетей.

Методы 1-5 предусматривают проведение электрических расчетов сети при заданных значениях параметров схемы и нагрузок. Иначе их называют схемотехническими [2].

При использовании статистических методов потери электроэнергии рассчитывают на основе устойчивых статистических зависимостей потерь от обобщенных параметров сети, например суммарной нагрузки, суммарной длины линий, числа подстанций и т.п. Сами же зависимости получают им основе статистической обработки определенного количества схемотехнических расчетов, для каждого из которых известны рассчитанное значение потерь и значения факторов, связь потерь с которыми устанавливается.

Статистические методы не позволяют наметить конкретные мероприятия по снижению потерь. Их используют для оценки суммарных потерь в сети. Но при этом, примененные к множеству объектов, например линий 6-10 кВ, позволяют с большой вероятностью выявить те из них, в которых находятся места с повышенными потерями [2]. Это дает возможность сильно сократить объем схемотехнических расчетов, а следовательно, и уменьшить трудозатраты на их проведение.

При проведении схемотехнических расчетов ряд исходных данных и результаты расчетов могут представляться в вероятностной форме, например в виде математических ожиданий и дисперсий. В этих случаях применяется аппарат теории вероятностей, поэтому эти методы называются вероятностными схемотехническими методами [4].

Для определения τ и kф, используемых в методах 4 и 5, существует ряд формул. Наиболее приемлемыми для практических расчетов являются следующие:


; (2.6)

, (2.7)


где kз - коэффициент заполнения графика, равный относительному числу часов использования максимальной нагрузки.

По особенностям схем и режимов электрических сетей и информационной обеспеченности расчетов выделяют пять групп сетей, расчет потерь электроэнергии в которых производят различными методами [1]:

транзитные электрические сети 220 кВ и выше (межсистемные связи), через которые осуществляется обмен мощностью между энергосистемами.

Для транзитных электрических сетей характерно наличие нагрузок, переменных по значению, а часто и по знаку (реверсивные потоки мощности). Параметры режимов этих сетей обычно измеряются ежечасно.

замкнутые электрические сети 110 кВ и выше, практически не участвующие в обмене мощностью между энергосистемами;

разомкнутые (радиальные) электрические сети 35-150 кВ.

Для питающих электрических сетей 110 кВ и выше и разомкнутых распределительных сетей 35-150 кВ параметры режима измеряются в дни контрольных замеров (характерные зимний и летний дни). Разомкнутые сети 35-150 кВ выделяются в отдельную группу в связи с возможностью проведения расчетов потерь в них отдельно от расчетов потерь в замкнутой сети.

распределительные электрические сети 6-10 кВ.

Для разомкнутых сетей 6-10 кВ известны нагрузки на головном участке каждой линии (в виде электроэнергии или тока).

распределительные электрические сети 0,38 кВ.

Для электрических сетей 0,38 кВ имеются лишь данные эпизодических замеров суммарной нагрузки в виде токов фаз и потерь напряжения в сети.

В соответствии с изложенным для сетей различного назначения рекомендуются следующие методы расчета [2].

Методы поэлементных расчетов рекомендуются как предпочтительные для отдельных линий и трансформаторов, потери в которых существенно зависят от транзитных перетоков.

Методы характерных режимов рекомендуются для расчета потерь в системообразующей и транзитной сети при наличии телеинформации о нагрузках узлов, периодически передаваемой в ВЦ энергосистемы. Оба метода - поэлементных расчетов и характерных режимов - основаны на оперативных расчетах потерь мощности в сети или ее элементах.

Методы характерных суток и числа часов наибольших потерь могут использоваться для расчета потерь в замкнутых сетях 35 кВ и выше самобалансирующихся энергосистем и в разомкнутых сетях 6-150 кВ.

Методы средних нагрузок применимы при относительно однородных графиках нагрузки узлов. Они рекомендуются как предпочтительные для разомкнутых сетей 6-150 кВ при наличии данных об электроэнергии, пропущенной за рассматриваемый период по головному участку сети. Отсутствие данных о нагрузках узлов сети заставляет предполагать их однородность.

Статистические методы рекомендуются как предпочтительные для определения потерь в сетях 0,38 кВ.

Все методы, применимые к расчетам потерь в сетях более высоких напряжений, при наличии соответствующей информации могут использоваться для расчета потерь и в сетях более низких напряжений.


2.2 Методы расчета потерь электроэнергии в распределительных сетях 0,38-6-10 кВ


Сети 0,38 - 6 - 10 кВ энергосистем характеризуются относительной простотой схемы каждой линии, большим количеством таких линий и низкой достоверностью информации о нагрузках трансформаторов. Перечисленные факторы делают нецелесообразным на данном этапе применение для расчетов потерь электроэнергии в этих сетях методов, аналогичных применяемым в сетях более высоких напряжений и основанных на наличии информации о каждом элементе сети. В связи с этим получили распространение методы, основанные на представлении линий 0,38-6-10 кВ в виде эквивалентных сопротивлений [3].

Нагрузочные потери электроэнергии в линии определяют по одной из двух формул в зависимости от того, какая информация о нагрузке головного участка имеется - активная WР и реактивная wQ энергия, переданная за время Т или максимальная токовая нагрузка Imax:


, (2.8)


Или


, (2.9)


где kфР и kфQ - коэффициенты формы графиков активной и реактивной мощности;

Uэк - эквивалентное напряжение сети, учитывающее изменение фактического напряжения как во времени, так и вдоль линии.

Если графики Р и Q на головном участке не регистрируются, коэффициент формы графика рекомендуется определять по (2.7).

Эквивалентное напряжение определяют по эмпирической формуле:


, (2.10)


где U1, U2 - напряжения в ЦП в режимах наибольших и наименьших нагрузок; k1 = 0,9 для сетей 0,38-6-10 кВ. В этом случае формула (2.8) приобретает вид:


, (2.11)


где kф2 определяют по (2.7), исходя из данных о коэффициенте заполнения графика активной нагрузки. В связи с несовпадением времени замера токовой нагрузки с неизвестным временем ее действительного максимума формула (2.9) дает заниженные результаты. Устранение систематической погрешности достигается увеличением значения, получаемого по (2.9), в 1,37 раза. Расчетная формула приобретает вид:


. (2.12)


Эквивалентное сопротивление линий 0,38-6-10 кВ при неизвестных нагрузках элементов определяют исходя из допущения одинаковой относительной загрузки трансформаторов. В этом случае расчетная формула имеет вид:


, (2.13)


где Sтi - суммарная номинальная мощность распределительных трансформаторов (РТ), получающих питание по i-му участку линий сопротивлением Rлi,

п - число участков линий;

Sтj - номинальная мощность i-го PТ сопротивлением Rтj;

т - число РТ;

Sт. г - суммарная мощность РТ, присоединенных к рассматриваемой линии.

Расчет Rэк по (2.13) предполагает обработку схемы каждой линии 0,38-6-10 кВ (нумерацию узлов, кодирование марок проводов и мощностей РТ и т.п.). Вследствие большого числа линий такой расчет Rэк может быть затруднительным из-за больших трудозатрат. В этом случае используют регрессионные зависимости, позволяющие определять Rэк, исходя из обобщенных параметров линии: суммарной длины участков линии, сечения провода и длины магистрали, разветвлений и т.п. Для практического использования наиболее целесообразна зависимость:


, (2.14)


где RГ - сопротивление головного участка линии;

lма, lмс - суммарные длины участков магистрали (без головного участка) с алюминиевыми и стальными проводами соответственно;

lоа, lос - то же участков линии, относящихся к ответвлениям от магистрали;

FM - сечение провода магистрали;

а1 - а4 - табличные коэффициенты.

В связи с этим зависимость (2.14) и последующее определение с ее помощью потерь электроэнергии в линии целесообразно использовать для решения двух задач:

определения суммарных потерь в k линиях как суммы значений, рассчитанных по (2.11) или (2.12) для каждой линии (в этом случае погрешности уменьшаются приблизительно в √k раз);

определения линий с повышенными потерями (очаги потерь). К таким линиям относят линии, для которых верхняя граница интервала неопределенности потерь превышает установленную норму (например, 5%).


3. Программы расчета потерь электроэнергии в распределительных электрических сетях


3.1 Необходимость расчета технических потерь электроэнергии


В настоящее время во многих энергосистемах России потери в сетях растут даже при уменьшении энергопотребления. При этом увеличиваются и абсолютные, и относительные потери, которые кое-где уже достигли 25-30%. Для того, чтобы определить, какая доля этих потерь приходится действительно на физически обусловленную техническую составляющую, а какая на коммерческую, связанную с недостоверностью учета, хищениями, недостатками в системе выставления счетов и сбора данных о полезном отпуске, необходимо уметь считать технические потери [6].

Нагрузочные потери активной мощности в элементе сети с сопротивлением R при напряжении U определяют по формуле:


, (3.1)


где P и Q - активная и реактивная мощности, передаваемые по элементу.

В большинстве случаев значения Р и Q на элементах сети изначально неизвестны. Как правило, известны нагрузки в узлах сети (на подстанциях). Целью электрического расчета (расчета установившегося режима - УР) в любой сети является определение значений Р и Q в каждой ветви сети по данным их значений в узлах [1]. После этого определение суммарных потерь мощности в сети представляет собой простую задачу суммирования значений, определенных по формуле (3.1).

Объем и характер исходных данных о схемах и нагрузках существенно различаются для сетей различных классов напряжения [4].

Для сетей 35 кВ и выше обычно известны значения P и Q в узлах нагрузки. В результате расчета УР выявляются потоки Р и Q в каждом элементе.

Для сетей 6-10 кВ известен, как правило, лишь отпуск электроэнергии через головной участок фидера, т.е. фактически суммарная нагрузка всех ТП 6-10/0,38 кВ, включая потери в фидере. По отпуску энергии могут быть определены средние значения Р и Q на головном участке фидера. Для расчета значений Р и Q в каждом элементе необходимо принять какое-либо допущение о распределении суммарной нагрузки между ТП. Обычно принимают единственно возможное в этом случае допущение о распределении нагрузки пропорционально установленным мощностям ТП. Затем с помощью итерационного расчета снизу вверх и сверху вниз корректируют эти нагрузки так, чтобы добиться равенства суммы узловых нагрузок и потерь в сети заданной нагрузке головного участка. Таким образом, искусственно восстанавливаются отсутствующие данные об узловых нагрузках, и задача сводится к первому случаю.

В описанных задачах схема и параметры элементов сети предположительно известны. Отличием расчетов является то, что в первой задаче узловые нагрузки считаются исходными, а суммарная нагрузка получается в результате расчета, во второй - известна суммарная нагрузка, а узловые нагрузки получают в результате расчета.

При расчете потерь в сетях 0,38 кВ при известных схемах этих сетей теоретически можно использовать тот же алгоритм, что и для сетей 6 - 10 кВ. Однако большое количество линий 0,4 кВ, сложности введения в программы информации по поопорным (постолбовым) схемам, отсутствие достоверных данных об узловых нагрузках (нагрузках зданий) делает такой расчет исключительно трудным, и, главное, неясно, достигается ли при этом желаемое уточнение результатов. Вместе с тем, минимальный объем данных об обобщенных параметрах этих сетей (суммарная длина, количество линий и сечения головных участков) позволяет оценить потери в них с не меньшей точностью, чем при скрупулезном поэлементном расчете на основе сомнительных данных об узловых нагрузках.


3.2 Применение программного обеспечения для расчета потерь электроэнергии в распределительных сетях 0,38 - 6 - 10 кВ


Одним из наиболее трудоемких является расчет потерь электроэнергии в распределительных сетях 0,38 - 6 - 10 кВ, поэтому для упрощения проведения подобных расчетов было разработано множество программ, основанных на различных методах. В своей работе я рассмотрю некоторые из них.

Для расчета всех составляющих детальной структуры технологических потерь мощности и электроэнергии в электрических сетях, нормативного расхода электроэнергии на собственные нужды подстанций, фактических и допустимых небалансов электроэнергии на энергообъектах, а также нормативных характеристик потерь мощности и электроэнергии был разработан комплекс программ РАП - 95 [1], состоящий из семи программ:

РАП - ОС, предназначенной для расчета технических потерь в замкнутых сетях 110 кВ и выше;

НП - 1, предназначенной для расчета коэффициентов нормативных характеристик технических потерь в замкнутых сетях 110 кВ и выше на основе результатов РАП - ОС;

РАП - 110, предназначенной для расчета технических потерь и их нормативных характеристик в радиальных сетях 35 - 110 кВ;

РАП - 10, предназначенной для расчета технических потерь и их нормативных характеристик в распределительных сетях 0,38-6-10 кВ;

РОСП, предназначенной для расчета технических потерь в оборудовании сетей и подстанций;

РАПУ, предназначенной для расчета потерь, обусловленных погрешностями приборов учета электроэнергии, а также фактических и допустимых небалансов электроэнергии на объектах;

СП, предназначенной для расчета показателей отчетных форм на основе данных об отпуске электроэнергии в сети разных напряжений и результатов расчета по программам 1-6.

Остановимся подробнее на описании программы РАП - 10, которая осуществляет следующие расчеты:

определяет структуру потерь по напряжениям, группам элементов;

рассчитывает напряжения в узлах фидера, потоки активной и реактивной мощности в ветвях с указанием их доли в суммарных потерях мощности;

выделяет фидеры, являющиеся очагами потерь, и рассчитывает кратности повышения норм нагрузочных потерь и потерь холостого хода;

рассчитывает коэффициенты характеристик технических потерь по ЦП, РЭС и ПЭС.

Программа позволяет рассчитывать потери электроэнергии в фидерах 6-10 кВ двумя методами:

средних нагрузок, когда коэффициент формы графика определяется на основе заданного коэффициента заполнения графика нагрузки головного участка kз или принимается равным измеренному по графику нагрузки головного участка. В этом случае значение kз должно соответствовать расчетному периоду (месяцу или году);

расчетных суток (типовых графиков), где заданное значение kф2 должно соответствовать графику рабочих суток.

Также в программе реализованы два оценочных метода расчета потерь электроэнергии в сетях 0,38 кВ:

по суммарной длине и количеству линий с различными сечениями головных участков;

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.