рефераты скачать

МЕНЮ


Органическое топливо

Для теплоснабжения музея-заповедника "Витославицы" предлагается установить два теплогенератора "Юсмар-1М", технические характеристики которого приведены в таблице 2.


Таблица 2 - Технические характеристики теплогенератора "Юсмар - 1М"

Наименование параметра

Значение параметра

Мощность электродвигателя насоса, кВт

2,8

Напряжение сети, В

380

Число оборотов электродвигателя, об/мин

2900

Рекомендуемые марки водяного насоса

ЦГ 12,5/50-К-4-2

КМ-20-30

Напор, м

32 - 50

Подача, м3/час

8,0 - 12,5

Обогреваемая площадь, кв. м

90-100

Средний расход электроэнергии на обогрев помещения с заданной в п.4 площадью, кВт/ч

1,4

Теплопроизводительность, ккал/ч

3498

Масса установки (с бойлером), кг

130

Объем воды в отопительной системе (ориентировочно), л

70-100

Стоимость полного комплекта (теплогенератор, насос, бойлер, система управления), $

1300

Номинальная температура нагрева системы, °С

40 - 60

Максимальная температура жидкости на малом круге циркуляции, °С

98

Диаметр по осям отверстий фланца, мм

110

Длина теплогенератора, мм

620

Диаметр трубы, мм

53

Масса теплогенератора, кг

6,5


В установке "ЮСМАР-М" вихревой теплогенератор в комплекте с погружным насосом помещены в общий сосуд-бойлер с водой (рис.14) для того, чтобы потери тепла со стенок теплогенератора, а также тепло, выделяющееся при работе электродвигателя насоса, тоже шли на нагрев воды, а не терялись. Габариты сосуда-бойлера: диаметр 650 мм, высота 2000 мм. Автоматика периодически включает и отключает насос теплогенератора, поддерживая температуру воды в системе (или температуру воздуха в обогреваемом помещении) в заданных потребителем пределах. Снаружи сосуд-бойлер покрыт слоем теплоизоляции, которая одновременно служит звукоизоляцией и делает практически неслышимым шум теплогенератора даже непосредственно рядом с бойлером.

Установки "ЮСМАР-М" питаются от промышленной трёхфазной сети 380 В, полностью автоматизированы, поставляются заказчикам в комплекте со всем необходимым для их работы и монтируются поставщиком "под ключ".

На эти установки, рекомендуемые для использования как в промышленности, так и в быту (для обогрева жилых помещений путем подачи горячей воды в батареи водяного отопления), имеются технические условия ТУ У 24070270, 001-96 и сертификат соответствия РОСС КиМХОЗ. С00039.

Рисунок 14 - Схема теплоустановки "ЮСМАР-М": 1 - вихревой теплогенератор, 2 - электронасос, 3 - бойлер, 4 - циркуляционный насос, 5 - вентилятор, 6 - радиаторы, 7 - пульт управления и блок автоматики, 8 - датчик температуры.


Как уже говорилось ранее, для теплоснабжения музея предлагается установить два теплогенератора "Юсмар-1М". Первая установка предназначена для отопления зданий музея. Расход горячей воды в системе отопления не подвержен резким изменениям, поэтому потребитель подключается непосредственно к бойлеру теплогенератора (рис.15).


Рисунок 15 - Схема подключения тепловой установки "Юсмар-1М" к системе отопления: 1 - теплоустановка "Юсмар-1М"; 2 - циркуляционный насос; 3 - пульт управления и автоматики; 4 - термодатчик; 5 - радиаторы.


Второй теплогенератор необходим для обеспечения музея-заповедника горячей водой. В этом случае расход воды потребителем колеблется во времени. Поэтому, теплогенератор "Юсмар-1М" подключается к системе горячего водоснабжения не напрямую, а через теплообменник (рис.16).


Рисунок 16 - Схема подключения тепловой установки "Юсмар-1М" к системе горячего водоснабжения: 1 - теплоустановка "Юсмар-1М"; 2 - циркуляционный насос; 3 - пульт управления и автоматики; 4 - термодатчик; 5 - теплообменник; 6 - бак-аккумулятор; 7 - кран горячей воды.


Санитарными нормами установлено, что температура воды, идущей на горячее водоснабжение, должна быть не менее 55˚С. Для того чтобы вода в баке-аккумуляторе 6 нагревалась до этой температуры надо подобрать необходимую площадь поверхности теплообменника 5.

Пусть данный теплообменник выполнен в виде змеевика из латунной трубки, наружный и внутренний диаметры которой равны dВ / dН = 14/16 мм. Рассчитаем необходимую длину этого змеевика.

Расход воды на горячее водоснабжение (нагреваемый теплоноситель) составляет: Gг. в. = 0,530 кг/с; расход воды через змеевик (греющий теплоноситель) принимаем равным G’г. в. =0,720 кг/с (G’г. в. равно расходу воды на отопление).

Объем V бойлера-аккумулятора принимаем исходя из следующего условия: запаса горячей воды в нем должно хватить на бесперебойное снабжение потребителей в течение 8 часов.Т.о.


V = Gг. в. · 8 · 3,6 = 0,53 · 8 · 3,6 » 15 м3. (4.1)

Отсюда следует: диаметр бака - D = 1,5м; высота бака - L = 2 м.

Температуры греющего теплоносителя: на входе - t11 = 95 °С, на выходе - t12 = 60 °С.

Температуры нагреваемого теплоносителя: на входе - t21 = 20 °С (принимаем из условия, что 1/3 горячей воды возвращается с температурой 50˚С, а 2/3 добавляем из водопровода с температурой 5˚С), на выходе - t22 = 55 °С.

Определим скорости движения теплоносителей в змеевике W1 и в баке-аккумуляторе W2:


 (4.2)

 (4.3)

(4.4) (4.5)


Для расчета коэффициента теплоотдачи α необходимо знать среднюю температуру воды в змеевике t1СР и в баке-аккумуляторе t2СР:

Для того, чтобы определить режим течения жидкости по змеевику и в баке, найдем числа Рейнольдса, Re1 и Re2 соответственно:


(4.6) (4.7)


Где: ν1 = 0,00000038 м2/с - кинематическая вязкость воды при температуре t1CР;

ν2 = 0,00000049 м2/с - кинематическая вязкость воды при температуре t2CР;

Так как Re1 > 10000 - режим течения воды в змеевике - турбулентный. Коэффициент теплоотдачи от внешней поверхности греющих труб к омывающей их воде α1 в бойлере рассчитывается с использованием уравнения подобия:


(4.8) (4.9)


Где: Pr1=2,55 и Pr1СТ=2,64 - критерии Прандтля при температуре воды t1СР=69,21°С и tСТ = t1СР - 2 = 67,21°С соответственно;

λ1 = 0,686 Вт/м· К - коэффициент теплопроводности воды при t1СР.

Так как скорость течения воды в баке очень мала, можно предположить, что теплообмен между горячим змеевиком и омывающей его водой происходит благодаря свободной конвекции. Она представляет собой обычно подъемное течение, обусловленное подъемной силой, действующей на нагретые на поверхности слои жидкости. Соответственно на холодной стенке устанавливается опускное течение. В качестве безразмерного критерия подобия для свободной конвекции используется число Гразгофа, Gr2


 (4.10)


где: L - высота бака-аккумулятора;

g - ускорение свободного падения;

Θ0 - температура наружной поверхности трубы;

V - температура жидкости вне узкой области свободноконвективного движения;

ν - кинематическая вязкость жидкости.

Таким образом, для нашего случая:


(4.11)


Теплоотдачу при свободной конвекции от нагретого змеевика к жидкости можно рассчитать по уравнению:


(4.12) (4.13)


Во всех аппаратах периодического действия происходит нестационарный теплообмен. Уравнение теплопередачи при нестационарном режиме работы имеет вид:


Q = k · F · D t · τ, (4.14)


где: τ - время работы аппарата;

Dt - средний температурный напор за время τ.

Уравнение теплопередачи и теплового баланса для всей поверхности теплообмена F за интервал времени dτ имеет вид:


dQ = kF Dt dτ = G1c (t11 - t1) dτ = G2c dt2, (4.15)

где: Dt - средняя разность температур между теплоносителями в момент времени τ;

t1 - текущее значение температуры греющего теплоносителя;

dt2 - изменение температуры нагреваемой воды за время dτ.

Температурный напор Dt в момент времени τ рассчитывается как среднелогарифмическая разность температур:


 (4.16)


Так как температуры t1 и t2 со временем изменяются, то Dt является функцией времени. Подставляя Dt в (15), получаем:


 (4.17)


откуда:


 (4.18) (4.19)


Таким образом, подставляя известные величины, получим:


 (4.20)


откуда: kF = 1865Вт/мК. (4.21)

Коэффициент теплопередачи определим по формуле:


 (4.22)


Определим площадь поверхности теплообмена F и длину змеевика l:


 (4.23) (4.24)


Таким образом из расчета видно, что для обеспечения потребителей горячей водой с температурой tГВ = 55˚С, необходимая длина змеевика теплообменника составляет 37 м. Диаметр змеевика можно принять равным DЗМ = 1,2 м.


4. Экономическая часть


Сравним экономический эффект котельной при ее реконструкции с установкой теплогенераторов фирмы Юсмар и при условии, что будут устанавливаться водогрейные котлы типа ТГ-120 (Гейзер-01), режимная карта которого приведена в таблице 3.


Таблица 3 - Режимная карта на водогрейный котел типа ТГ-120

Наименование параметров

Тепловые нагрузки,%

40

83

Производительность, ГДж/час

0,172

0,343

Давление воды на котле, МПа

0,14

0,155

Давление воды до котла, МПа

0,17

0, 19

Низшая теплота сгорания газа, кДж/м3

33513

33513

Число газовых горелок, шт

1

1

Давление газа перед котлом, МПа

20

16

Разрежение за котлом, мм в. ст.

0,5

1,5

Температура уходящих газов, °С

95

145

Состав уходящих газов,%:

СО2

О2


4,4

13,2


4,4

13,2

Расход газа на котел, м3/час

5,7

11,8

Коэффициент избытка воздуха

2,51

2,51

Потери тепла,%:

с уходящими газами

в окружающую среду


6,60

2,5


10,98

2,7

КПД

90,90

86,32

Удельный расход топлива, м3/ГДж

139,0

143,9

Удельный расход условного топлива, кг/ГДж

159,0

164,5


Определение себестоимости вырабатываемого тепла находится по выражению:


 (5.1)


где ΣЭ - годовые эксплуатационные затраты в руб.;

Qгод - годовой отпуск тепла в ГДж.

Годовой отпуск тепла подсчитывают по формуле:


 (5.2)


где Q = 0,66ГДж/час - производительность котельной в час;

m = 220 - количество дней отопительного периода;

tв = +18˚С - внутренняя температура в помещении;

tср = - 2,6˚С - наружная средняя температура отопительного периода;

tно = - 27˚С - наружная температура для проектирования системы теплоснабжения;

Годовые эксплуатационные затраты определяют по уравнению:


ΣЭ=Этоп+Ээл. эн. +Эвод+Эзар+Эамор+Этек. рем. +Эобщ. расх., руб/год (5.3)


где: Этоп - затраты на топливо;

Ээл эн - затраты на электроэнергию;

Эвод - затраты на используемую воду;

Эзар - затраты на заработную плату;

Эамор - амортизационные отчисления;

Этек. рем - затраты на текущий ремонт;

Эобщ. расх - затраты общекотельные и прочие расходы.

Определим затраты на эксплуатацию котлов ТГ-120.

1 затраты на топливо:


Этоп = kпот · B · hгод · Стоп, руб/год (5.4)


где kпот = 1,055 - коэффициент, учитывающий складские, транспортные и прочие потери; В = 11,8 м3/ч - часовой расход топлива на один котел при максимальной нагрузке; n =2 - количество установленных котлов (без резервных); hгод - число часов использования установленной мощности котельной в год: hгод = 24 · тот +24 · тг. в. = 8760часов, где тот - количество дней отопительного периода; тг. в. - количество дней летнего периода;

Стоп = 49коп/м3 - стоимость газа;


Этоп = 1,055 · (11,8 · 2 · 220 + 11,8 · 145) · 24 · 0,49 = 85644 руб/год, (5.5)

2 затраты на потребляемую электроэнергию:


Ээл. эн = N · hгод · Сэл. эн. руб/год, (5.6)


где N - установленная мощность электродвигателей в кВт:

Nот = 5,5кВт - мощность электродвигателя насоса системы отопления,

Nг. в. = 4,5кВт - мощность электродвигателя насоса системы горячего водоснабжения;

hгод - число часов использования установленной мощности котельной в год:

hот = 220 часов,

hг. в. = 365 часов;

Сэл. эн =0,72 руб/кВт·ч - стоимость электроэнергии за 1 кВт · ч потребляемой мощности;


Ээл. эн. = 24· (220· (5,5+4,5) +145·4,5) ·0,72 = 49291 руб/год. (5.7)


3 затраты на используемую воду:


Эвод = Dмакс · hгод · Свод, (5.8)


где Gмакс = 2/3 · Gг. в. ·= 2/3 · 3,34 = 2,23 м3/час - максимальный часовой расход добавочной воды;

Свод = 7,61 руб/м3 - стоимость 1м3 добавочной воды;


Эвод = 24 · 365 · 2,23 · 7,61 = 148660 руб/год. (5.9)


4 затраты на заработную плату:

Так как котлы ТГ-120 полностью автоматизированы, в обслуживающем персонале нет необходимости. Достаточно того, чтобы система управления и сигнализации котлов была выведена на диспетчерский пульт МУП "Теплоэнерго".


Эзар = 0 руб/год.


5 затраты на амортизационные отчисления:


Эамор = Р1 · Сстр + Р2 · Соб, руб/год, (5.10)


где P1 = 0,032 - процентные отчисления от стоимости общестроительных работ;

Сстр = 0 - сметная стоимость общестроительных работ в руб;

P2 = 0,082 - процентные отчисления от стоимости оборудования с монтажом;


Соб = СТГ-120 + Смонт = 2 · 64000 + 20000 =148000 руб –


сметная стоимость оборудования и его монтажа;


Эамор = 0,032 · 0 + 0,082 · 148000 = 12136 руб/год. (5.11)


6 затраты на текущий ремонт принимают в размере 20 - 30% затрат на амортизацию и, следовательно, подсчитывают по выражению:


Этек. рем = (0,2 ÷ 0,3) Эамор = 0,25 · 12136 = 3034 руб/год. (5.12)


7 затраты на общекотельные и прочие расходы принимают в размере 30% суммы амортизационных отчислений, годового фонда зарплаты и затрат на текущий ремонт, т.е.

Эобщ. расх = 0,3 (Эамор + Этек. рем + Эзар) = 0,3 · (12136+3034) = = 4551 руб/год. (5.13)


Таким образом, годовые затраты на эксплуатацию котлов ТГ-120 составят:


ΣЭ = 85644 + 49291 + 148660 + 12136 + 3034 + 4551 = 303316 руб/год, (5.14)


а себестоимость 1 ГДж тепла будет равна:


 (5.15)


Рассчитаем затраты на эксплуатацию теплогенераторов "Юсмар-1М".

1 затраты на топливо:

Этоп = 0.

2 затраты на потребляемую электроэнергию:


Ээл. эн = N · hгод · Сэл. эн. = ( (5,5+2·2,8+4,5) ·220+ (2,8+4,5) ·145) ·24·0,72 = = 77596 руб/год, (5.16)


3 затраты на используемую воду:


Эвод = Dмакс · hгод · Свод = 2,23 · 365 · 7,61 = 148660 руб/год. (5.17)


4 затраты на заработную плату:

Так как теплогенераторы "Юсмар-1М", как и котлы ТГ-120 полностью автоматизированы, в обслуживающем персонале нет необходимости. Достаточно того, чтобы система управления и сигнализации теплогенераторов была выведена на диспетчерский пульт МУП "Теплоэнерго".


Эзар = 0 руб/год.


5 затраты на амортизационные отчисления:


Эамор = Р1 · Сстр + Р2 · Соб, руб/год =, (5.18)


где P1 = 0,032 - процентные отчисления от стоимости общестроительных работ; Сстр = 0 - сметная стоимость общестроительных работ в руб; P2 = 0,082 - процентные отчисления от стоимости оборудования с монтажом;


Соб = СЮсмар-1М + Смонт = 2 · 39000 + 20000 =98000 руб –


сметная стоимость теплогенератора "Юсмар-1М" и его монтажа;


Эамор = 0,032 · 0 + 0,082 · 98000 = 8036 руб/год. (5.19)


6 затраты на текущий ремонт принимают в размере 20 - 30% затрат на амортизацию и, следовательно, подсчитывают по выражению:


Этек. рем = (0,2 ÷ 0,3) Эамор = 0,25 · 8036 = 2009 руб/год. (5.20)


7 затраты на общекотельные и прочие расходы принимают в размере 30% суммы амортизационных отчислений, годового фонда зарплаты и затрат на текущий ремонт, т.е.

Эобщ. расх = 0,3 (Эамор + Этек. рем + Эзар) = 0,3 · (8036 + 2009) = = 3014 руб/год. (5.21)


Таким образом, годовые затраты на эксплуатацию теплогенераторов "Юсмар-1М" составят:


ΣЭ = 77596 + 148660 + 8036 + 2009 + 3014 = 239315 руб/год, (5.22)


а себестоимость 1 ГДж тепла будет равна:


 (5.23)


Таким образом, себестоимость вырабатываемого 1 ГДж тепла на котельной с теплогенераторами фирмы Юсмар (159 руб/ГДж) на 21,3% меньше себестоимости тепла, выработанного на котельной, где установлены котлы ТГ-120 (202 руб/ГДж).

Экономический эффект котельной с установками "Юсмар-1М" составляет:


Э = (202 - 159) • 1501 = 64543 руб/год. (5.24)


5. Экология


При сжигании топлива входящие в его состав горючие элементы соединяются с кислородом воздуха. При этом происходит преобразование химической энергии топлива в тепловую, идущую на нагрев продуктов сгорания топлива.

Природный газ, сухое беззольное высокоценное топливо, имеет следующий состав, считая по объему:

метан СН4 от 85 до 98,3%;

тяжелые углеводороды СnHm от 2 до 6%;

двуокись углерода СО2 от 0,1 до 1,0%;

азот N2 от 1 до 5%.

Теплота сгорания сухого природного газа колеблется в пределах от 30,6 до 36,9 МДж/м3.

Продуктами полного сгорания топлива является двуокись углерода СО2, сернистый газ SО2 и водяные пары Н2О. Кроме того, компонентами продуктов сгорания топлива являются азот N2, содержавшийся в топливе и атмосферном воздухе, и избыточный кислород О2, который содержится в продуктах сгорания топлива, потому что процесс горения протекает не идеально и связан с необходимостью подачи большего, чем теоретически необходимо, количества воздуха.

В котельной №48 в настоящее время тепло получают путем сжигания газообразного топлива.

Страницы: 1, 2, 3, 4, 5, 6


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.