рефераты скачать

МЕНЮ


Оценка технического состояния трансформаторных вводов на основе нечетких алгоритмов

Для измерения tgδ и емкости используют схему моста Шеринга (рис.3.3). В схеме, кроме испытуемой изоляции с емкостью Сх , находятся еще образцовый конденсатор (емкость Со) с очень малыми диэлектрическими потерями (газовая изоляция), регулируемое сопротивление R2 и регулируемый конденсатор (емкость С, и сопротивление R1). По мере регулирования сопротивления R2 и емкости конденсатора С, удается получить равновесие моста, когда индикатор показывает нуль. При этом из условия равновесия моста получается величины tgδ, и емкость испытуемой изоляции по выражениям:


tgδ = co С1 R1, Сх = Со R1, / R2


где со = 100П - угловая частота.

Кроме измерения tgδ и емкости С1 основной изоляции (всего изоляционного остова) производится также оценка состояния изоляции измерительного конденсатора tgδ 2 , С2 (при наличии у ввода прибора для измерения напряжения ПИН) и изоляции последней обкладки (наружных слоев) tgδ 3, C3 относительно соединительной втулки ввода.


Рис.3. Схема моста Шеринга для измерения тангенса угла диэлетрических потерь и емкости изоляции.


Необходимость в оценке состояния наружных слоев изоляции вводов основана на соображении, что в случае увлажнения изоляционного остова наружные слои в первую очередь воспримут влагу и это позволит по значению tgδ 3 и динамике его изменения оценить их состояние. Увеличение tgδ изоляции ввода происходит при увлажнении бумаги, загрязнении масла, появлении частичных разрядов. В частности, его значение увеличено при наличии металлической пыли, попавшей из дефектного сильфона.

Величина tgδ дает усредненную объемную характеристику состояния изоляции, поскольку активная составляющая тока, вызванная диэлектрическими потерями в местном дефекте, при измерении относится к общему емкостному току ввода. Как правило, измерение tgδ позволяет обнаружить общее (т.е. охватывающее большую часть объема) ухудшение изоляции. Местные дефекты, т.е. дефекты, охватившие сравнительно небольшую часть объема изоляции, а также сосредоточенные дефекты плохо обнаруживаются измерением tgδ.

Измерение емкости изоляции, кроме информации об изменении структуры изоляции, вызвавшем изменение процессов поляризации, позволяет обнаружить и местные грубые дефекты (пробой части изоляции). Степень выявляемости дефектов также зависит от соотношения между объемами поврежденной и неповрежденной частей изоляции.

Практикуемые в эксплуатации методы контроля БМИ вводов 110-500 кВ, заключающиеся в измерении тангенса угла диэлектрических потерь и изоляционных характеристик масла, не выявляют многих быстро прогрессирующих дефектов во внутренней изоляции вводов в начальной стадии их развития.

Анализ результатов профилактических испытаний поврежденных маслонаполненных вводов показывает, что лишь в немногих случаях развитие дефектов в какой-то мере влияло на характеристики БМИ вводов. Недостаточной эффективности оценки состояния вводов по измеренной величине тангенса угла диэлектрических потерь во многом способствует низкий уровень напряженности электрического поля, создаваемой во внутренней изоляции ввода при его измерении (создаваемое для измерения tgδ напряжение - только 10 кВ, а класс напряжения вводов - 110 кВ и выше). При наличии частичных разрядов tgδ зависит от напряжения.

На практике был случай, когда ввод 110 кВ с БМИ имел электрический пробой нескольких слоев бумаги изоляционного остова, в то время как абсолютное значение тангенса угла диэлектрических потерь, измеренное у ввода при испытательном напряжении 10 кВ, не превышало нормированного значения.

5. Метод контроля качества уплотнений вводов


Эта проверка производится созданием во вводах избыточного давления 100 кПа в течение 30 минут. При этом не должно наблюдаться течи масла и снижения испытательного давления. Такое испытание позволяет определить слабые места, не выявленные при внешних осмотрах. Особое внимание следует уделять уплотнениям в верхних частях вводов, которые в эксплуатации работают при очень малом избыточном давлении.

Эта проверка позволяет предотвратить течь масла, но не выясняет внутренние повреждения изоляции.

Снижение показания манометра ввода также свидетельствует о нарушении герметичности. Однако если манометр неисправен, то установить потерю герметичности не всегда возможно. Поэтому и предусмотрена проверка манометра в межремонтный период. Ее следует производить не реже 1 раза в год, а также в случаях, если манометр не изменяет своего показания при значительных изменениях температуры окружающей среды или нагрузки. Минимально и максимально допустимые давления масла в герметичном вводе указываются в его паспорте. Для того чтобы манометр был достаточно чувствительным индикатором состояния уплотнений ввода, его шкала не должна значительно превышать значения рабочего давления масла. Оптимальным является случай, когда предел измерения манометра в 1,5 раза превышает максимальное или в 2 раза среднее рабочее давление. Повышение давления масла во вводе свидетельствует о нарушении свойств трансформаторного масла и оно должно быть проверено.

Как и проверка качества уплотнений вводов избыточным давлением, проверка манометра также не выясняет внутренние повреждения изоляции.

6. Метод контроля состояния вводов путем испытания трансформаторного масла

Многие повреждения или отклонения от нормального состояния вводов вообще не проявляются при внешнем осмотре. Особенно это относится к начинающимся внутренним повреждениям. Значительная часть внутренних повреждений может быть определена проверкой состояния масла. Изменение его характеристик происходит при увлажнении, загрязнении, попадании воздуха или другого газа; в результате естественного старения, как самого масла, так и бумаги. Испытание трансформаторного масла является распространенным способом проверки состояния вводов.

Основными параметрами, определяющими свойства масла как диэлектрика, являются электрическая прочность, проводимость и диэлектрические потери. Свойства масла также зависят от его газо- и влагосодержания, наличия загрязнений (твердых частиц), содержания кислот и щелочей. Электрическая прочность, характеризуемая пробивным напряжением, меняется при увлажнении и загрязнении масла и может служить диагностическим признаком. Диэлектрические потери в масле определяются в основном его проводимостью и растут по мере накопления в масле продуктов старения и загрязнения. Старение масла определяется окислительными процессами, воздействием электрического поля и конструкционных материалов (металлы, бумага). Наличие продуктов окисления в масле характеризуется его кислотным числом, которое определяется количеством гидроокиси калия (в миллиграммах), затраченного для нейтрализации кислых соединений.

Испытание для проб масла проводится в лабораторных условиях. При этом определяются основные характеристики трансформаторного масла:

- электрическая прочность (пробивное напряжение) - определяется в специальном сосуде с нормированными размерами электродов при приложении напряжения промышленной частоты (ГОСТ 6581-75);

- тангенс угла диэлектрических потерь - (tgδм) определяется при температурах 20°С и 70°С по мостовой схеме Шеринга при напряженности переменного электрического поля, равной 1кВ/мм (ГОСТ 6581-75);

- цвет масла;

-механические примеси - количественная оценка содержания производится путем фильтрования пробы с последующим взвешиванием осадка (ГОСТ 6370-83);

- температура вспышки масла;

- кислотное число масла (ГОСТ 5985-79);

-влагосодержание масла. Эта характеристика особенно важна при диагностике негерметичных вводов. Для определения влагосодержания применяют два метода. Метод, регламентированный ГОСТ 7822-75, основан на взаимодействии гидрида кальция с растворенной водой. Массовая доля воды определяется по объему выделившегося водорода. Этот метод сложен, результаты не всегда воспроизводимы. Предпочтительней кулонометрический метод (ГОСТ 24614-81), основанный на реакции между водой и реактивом Фишера. Реакция идет при прохождении тока между электродами в специальном аппарате.

Приведенные выше показатели нормируются .

Однако, как показывает практика, эти показатели, если они получены в лабораторных условиях, не всегда характеризуют истинное состояние вводов на электрической подстанции. Кроме того, малый объем масла во вводе затрудняет применение этого подхода для оценки его состояния.

7. Метод дефектоскопии, основанный на хроматографическом анализе растворенных в масле газов (ХАРГ)

Этот метод позволяет выявить дефекты в силовых трансформаторах, а также во вводах на ранней стадии развития.

Лабораторные исследования, проведенные в ряде стран, а также анализ спектра газов в трансформаторах и вводах позволили установить характеристические газы, специфичные для того или иного вида повреждения: водород (Н2), углеводородные газы: метан (СН4); этилен (С2Н4); этан (С2Н6), двуокись углерода (СО2) и окись углерода (СО), ацетилен (С2Н2). Таким образом, по характеристическим газам можно предположить вид развивающегося дефекта. Газоадсорбционная хроматография основана на разделении компонентов газовой смеси при помощи различных адсорбентов - пористых веществ с сильно развитой поверхностью.

Выделенные из масла газы обычно анализируются газовым хроматографом с детектором по теплопроводности.

Структурная схема хроматографической установки приведена на рис.3.4.

Рис.4. Структурная схема хроматографической установки.


1 - баллон с газом-носителем; 2 - устройство для введения пробы (дозатор); 3 - разделительная колонка; 4 - детектор; 5 - регистратор; 6 - устройство для извлечения газа из масла.

Процесс газовой хроматографии состоит из двух этапов: разделение анализируемой смеси на компоненты (качественный анализ) и определение их концентраций (количественный анализ).

Анализируемая смесь газов (проба) вводится в поток газа-носителя, который с постоянной скоростью пропускается через разделительную колонку, содержащую адсорбент. Различия в физико-химических свойствах отдельных газов смеси вызывают различия в скорости их продвижения через адсорбент (пористое вещество с сильно развитой поверхностью). Поэтому на выходе разделительной колонки будут последовательно появляться составляющие анализируемой пробы (в смеси с газом-носителем). Эти составляющие имеют различную теплопроводность, что позволяет, детектором формировать соответствующие сигналы, регистрируемые специальным устройством (обычно самопишущим потенциометром).

Последовательность (время) выхода из разделительной колонки конкретных газов известна (для данных условий анализа). Это дает информацию о составе анализируемой смеси. Для получения количественных данных интегратором определяется площадь пиков хроматограммы, которая на основании данных калибровки приводится к значениям концентрации соответствующих газов. Возможности разделения компонентов газовой смеси определяются характеристиками разделительной колонки: ее наполнителем (адсорбентом), длиной и температурным режимом.

Газ-носитель должен быть инертным по отношению к анализируемым веществам и примененным адсорбентам. Он также должен обеспечивать нормальную работу детектора.

Назначение детектора состоит в преобразовании поступающих на его вход отдельных компонентов газовой смеси в электрические сигналы, которые регистрируются на ленте электронного потенциометра в виде последовательно расположенных импульсов напряжения, получивших название хроматограммы.

Принцип действия часто применяемого детектора-катарометра основан на индикации изменения теплопроводности проходящих сквозь него газов (детектор по теплопроводности). Чувствительные элементы катарометра – резисторы расположены в камерах, по которым проходит поток газов. Два рабочих резистора обтекаются газом, выходящим из разделительной колонки; два других резистора - чистым газом-носителем. Резисторы включены в мостовую измерительную схему и нагреваются протекающим по ним током. При появлении в рабочей камере компонента анализируемой смеси, который изменяет теплопроводность газа в камере, изменяются условия теплопередачи от рабочих резисторов к ее стенке. При этом изменяются сопротивления рабочих резисторов и измерительный мост разбалансируется. Напряжение на диагонали моста, соответствующее концентрации данного компонента смеси, записывается регистратором.

Анализ извлеченной смеси газов производится по методике, определяемой типом примененного хроматографа и составом контролируемых газов. Результаты анализа регистрируются на диаграммной ленте. Состав анализируемой смеси определяется по времени и последовательности появления пиков на хроматограмме. Калибровка производится или эталонной смесью газов с известной концентрацией компонентов, или по одному газу (обычно азоту или воздуху) с соответствующим пересчетом по коэффициентам чувствительности.

Методика диагностики повреждений по хроматографическому анализу растворенных в масле газов является многокритериальной:

- если анализ газов показал состояние "опасности" или "повреждений", чаще проводится хроматографический контроль;

- по характеристическим газам определяют вид развивающего дефекта;

- по отношению концентраций газов этот дефект уточняется;

- по скорости нарастания концентрации газов за определенный промежуток времени оценивается степень опасности развивающегося дефекта и даются рекомендации.

Преимущества метода ХАРГ: позволяет обнаружить довольно широкий класс дефектов, высокая вероятность совпадения прогнозируемого и фактического дефектов. В настоящее время применяют ХАРГ вместе с измерением tgδ изоляции как основные методы диагностики вводов в процессе эксплуатации.

Недостатки: отбор масла под рабочим напряжением вводов невозможен вследствие особенностей конструкций их маслоотборных устройств. Необходимость частого отбора пробы масла неприемлема, особенно для герметичных конструкций.

Малый объем масла во вводах 110-220 кВ существенно затрудняет регулярный контроль путем отбора и анализа проб масла. Полная отдача сильфонов, компенсирующих температурное изменение объема масла в конструкциях серийных вводов 110-150 кВ, составляет 1,5-2,0 л, так что после отбора пробы (0,5 л) возникает необходимость последующего трудоемкого долива масла и соответствующего дорогостоящего приспособления. Характеристика пробы масла не всегда соответствует его фактическому состоянию в оборудовании, поскольку часть примесей может не попадать в пробу.

Методика выделения газов существенно влияет на точность определения концентраций контролируемых газов. Расхождения в методике выделения нередко являются причиной значительных расхождений в результатах анализа, проведенных в разных лабораториях. Кроме того, газосодержание масла конкретного ввода и скорость его изменения зависят от большого количества факторов. К ним относятся различия конструктивных материалов, режимы нагрузки, класс напряжения и т.п. Поэтому к граничным нормам следует относиться как к величине, отражающей компромисс между желанием выявить дефекты и затратами на контроль. Высокая чувствительность метода ХАРГ увеличивает вероятность ложной отбраковки, т.к. с учетом сравнительно небольшого объема масла во вводе, позволяет обнаружить дефект, который из-за малого его развития может и не приводить к аварийному повреждению ввода.

Эффективность контроля при этом в значительной мере определяется опытом персонала. Так, в частности, нормальное состояние ввода можно констатировать и в случае превышения нормы концентрации ряда газов, если скорости изменения этих концентраций малы. Однако при скорости изменения концентрации, превышающей нормированную предельную, малое абсолютное превышение концентрации не может быть признаком отсутствия дефекта.

Необходимо также отметить о сложности и высокой стоимости хроматогра-фической установки и трудности ее наладки и освоения.

8. Метод постоянного контроля изоляции вводов


Метод заключается в контроле значения емкостного тока (тока небаланса) в нулевом проводе звезды, образованной соединением измерительных отводов всех трех вводов трехфазного трансформатора.

Принцип действия устройства контроля изоляции вводов (КИВ) основан на измерении суммы токов трехфазной системы, протекающих под воздействием рабочего напряжения через изоляцию трех вводов, включенных в разные фазы. Если различия характеристик изоляции в исходном состоянии трех одновременно контролируемых объектов незначительны, можно предположить, что измеряемый суммарный ток в пределе будет равен нулю. При ухудшении состояния изоляции одного из этих вводов увеличивается его комплексная проводимость, а значит, и сила тока через него. В результате этого изменится суммарный ток.

Устройство состоит из двух блоков: КИВ-1, устанавливаемого в шкафу зажимов вторичной коммутации на трансформаторе или вблизи него, и КИВ-2, устанавливаемого на панели релейной защиты трансформатора на щите управления подстанции, и применяется на вводах напряжением 500 кВ и выше. Структурная схема устройства представлена на рис.

Блок КИВ-1 имеет фильтр, позволяющий отстроиться от напряжения небаланса, обусловленного высшими гармониками, и насыщающийся трансформатор с отпайками. Отпайки позволяют уменьшить ток небаланса, обусловленный разницей в значениях емкостей вводов. Проводник от каждого ввода подсоединяется к соответствующей отпайке трансформатора и "звезда" образуется непосредственно в блоке КИВ-1. Блок КИВ-2 имеет выпрямитель, миллиамперметр для измерения тока небаланса, потенциометр для изменения тока уставки, усилитель, сигнальную неоновую лампу и выходные реле. При повреждении одного ввода емкость его увеличивается, в нулевом проводе и соответственно в первичной обмотке трансформатора КИВ-1 возрастает ток небаланса.

После усиления и выпрямления сигнал подается в схему релейной защиты с действием на отключение или на сигнализацию. Для того чтобы устройство не срабатывало при переходных процессах и кратковременных повышениях напряжения, время его срабатывания устанавливается не менее 8с. В нормальных условиях емкостный ток ввода 500 кВ составляет примерно 100 мА. Потенциометр устройства КИВ-2 позволяет менять уставку тока срабатывания в диапазоне 3-15 мА.

Однако необходимо отметить, что ток, появившийся на выходе КИВ-1, может быть вызван не только развитием дефекта изоляции в одном из вводов, а также и другими факторами: изменением симметрии фазного напряжения, изменением емкостного тока влияний от других фаз и другого, находящегося на подстанции электрооборудования. Кроме того, метод позволяет фиксировать только изменение диэлектрических характеристик изоляции, но не выявляет такие развивающиеся дефекты как накопление осадка, ухудшение характеристик масла.


Рис.3.5. Структурная схема устройства контроля изоляции ввода.


С1- емкость основной изоляции ввода, С2- емкость измерительного конденсатора ввода.

9. Метод индикации частичных разрядов


Одной из основных причин старения изоляции и повреждений современных герметизированных вводов являются ЧР. Разряды постепенно разрушают БМИ, что в конечном итоге приводит к пробою или перекрытию по поверхности изоляционной конструкции.

ЧР в изоляции приводят к нейтрализации некоторого заряда в месте дефекта с последующим изменением зарядов элементов схемы испытаний. Внешними проявлениями процесса ЧР в изоляции являются импульсы напряжения во вводе и вызванный ими ток переходного процесса. Сам ток ЧР современными методами непосредственно измерить невозможно, однако вызванные им быстрые изменения электромагнитного поля могут быть отмечены достаточно чувствительным прибором.

В настоящее время больше всего применяют два метода обнаружения ЧР в изоляции: электрический и акустический.

Электрический метод основан на измерении тока переходного процесса во внешней цепи. Этот ток можно определить как произведение кажущегося заряда ЧР на соответствующий коэффициент. Импульс тока ЧР создает импульс давления в окружающей среде, который может быть зарегистрирован соответствующим устройством. На этом принципе основаны акустические методы обнаружения ЧР.

Особенностью всех методов измерения ЧР является необходимость приведения показаний измерительного устройства к значению кажущегося заряда ЧР или другого параметра. Это производится при помощи градуировки, т.е. путем сравнения показаний измерительного устройства, вызванных разрядами, с показаниями при приложении к изоляции ввода градуировочных воздействий с известными количественными характеристиками.

Способы градуировки при измерении электрическими методами хорошо разработаны - имеются необходимые градуировочные устройства. Проблемы градуировки при акустических измерениях еще не решены. Кроме того, показания акустических измерительных устройств существенно зависят от места возникновения разрядов, условий прохождения сигналов и от затухания их в элементах изоляционной конструкции. Поэтому акустические методы контроля в настоящее время могут использоваться лишь для обнаружения наличия ЧР.

Устройство для измерения ЧР (рис.3.6.) состоит из первичного измерительного преобразователя (измерительного элемента) 1 и измерительного прибора 2.


Рис.6. Структурная схема измерительного устройства ЧР.


Измерительный элемент 1 преобразует импульсы тока в контролируемой цепи, вызванные ЧР в импульсы напряжения, подаваемые на вход измерительного прибора. В измерительном приборе 2 производится преобразование полученных на выходе измерительного элемента 1 импульсов напряжения и измерение их параметров. Основными узлами измерительного прибора 2 являются регулятор чувствительности 3, фильтр 4, усилитель 5 и индикатор 6. Регулятором чувствительности выбирается диапазон измерения. Основное назначение фильтра - подавление напряжения промышленной (испытательной) частоты и его высших гармоник. Для этого применяется фильтр высших частот. Часто фильтр используется для формирования полосы пропускания измерительного устройства - в этом случае применяется полосовой фильтр. В некоторых приборах фильтры не применяются, а обе функции - подавление низкочастотных напряжений и формирование полосы - выполняют другие элементы (датчик, усилитель).

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.