рефераты скачать

МЕНЮ


Научная работа по физике на тему "Баллистическое движение тел"

Управление ракетой осуществляется так, что через несколько секунд после старта она, продолжая подъём вверх, начинает постепенно наклоняться в сторону цели, описывая в пространстве дугу. Угол между продольной осью ракеты и горизонтом (угол тангажа) изменяется при этом на 90º до расчетного конечного значения. Требуемый закон изменения (программа) угла тангажа задается программным механизмом, входящим в бортовую аппаратуру ракеты. На завершающем отрезке активного участка траектории угол тангажа выдерживается, постоянны и ракета летитпрямолинейно, а когда скорость достигает расчетной величины - двигательную установку  выключают. Кроме величины скорости, на завершающем отрезке активного участка траектории устанавливают с высокой степенью точности также и заданное направление полёта ракеты (направление вектора её скорости). Скорость движения в конце активного участка траектории достигает значительных величин, но ракета набирает эту скорость постепенно. Пока ракета находится в плотных слоях атмосферы, скорость её мала, что позволяет снизить потери энергии на преодоление сопротивления среды.

Момент выключения двигательной установки разделяет траекторию баллистической ракеты на активный и пассивный участки. Поэтому точку траектории, в которой выключаются двигатели, называют граничной точкой. В этой точке управление ракетой обычно заканчивается и весь дальнейший путь к цели она совершает в свободном движении. Дальность полёта баллистических ракет вдоль поверхности Земли, соответствующая активному участку траектории, равна не более чем 4-10% общей дальности. Основную часть траектории баллистических ракет составляют участок свободного полёта.

 

Для существенного увеличения дальности нужно применять многоступенчатые ракеты.

Многоступенчатые ракеты состоят из отдельных блоков-ступеней, каждая из которых имеет свои двигатели. Ракета стартует с работающей двигательной установкой первой ступени. Когда топливо первой ступени израсходуется, включается двигатель второй ступени, а первая ступень сбрасывается. После сброса первой ступени сила тяги двигателя должна сообщить ускорение меньшей массе, что приводит к значительному возрастанию скорости vв конце активного участка траектории по сравнению с одноступенчатой ракетой, имеющей ту же начальную массу.

Расчеты показывают, что уже при двух ступенях можно получить начальную скорость, достаточную для полёта головной части ракеты на межконтинентальные расстояния.

Идею применения многоступенчатых ракет для получения больших начальных скоростей и, следовательно, больших дальностей полёта, выдвинул К.Э. Циолковский. Эту идею используют при создании межконтинентальных баллистических ракет и ракет-носителей для запуска космических объектов.



















Б) траектории управляемых снарядов.

Траектория ракеты – это линия, которую  в пространстве описывает её центр тяжести. Управляемый снаряд – это беспилотный летательный аппарат, обладающий средствами управления, с помощью которых можно влиять на движение аппарата на всей траектории или на одном из участков полёта. Управление снарядом на траектории потребовалось для того, чтобы поразить цель, оставаясь на безопасном от неё расстоянии. Существуют два главных класса целей: подвижные и неподвижные. В свою очередь реактивный снаряд может запускаться с неподвижного стартового устройства или с подвижного (например, с самолёта). При неподвижных целях и стартовых устройствах данные, необходимые для поражения цели, получаются из известного относительного расположения места старта и цели. При этом траектория движения реактивного снаряда может быть заранее рассчитана, а снаряд снабжен устройствами, обеспечивающими его движение по определённой рассчитанной программе.

В других случаях относительное расположение места старта и цели непрерывно меняется. Для поражения цели в этих случаях необходимо иметь устройства, следящие за целью и непрерывно определяющие взаимное положение снаряда и цели. Сведения, получаемые от этих устройств, используются для управления движением снаряда. Управление должно обеспечивать движение ракеты к цели по наивыгоднейшей траектории.

Для того чтобы полностью охарактеризовать полёт ракеты, недостаточно знать только такие элементы её движения, как траектория, дальность, высота, скорость полёта и другие величины, характеризующие движение центра тяжести ракеты. Ракета может занимать в пространстве различные положения относительно своего центра тяжести.

Ракета представляет собой тело значительных размеров, состоящее из множества узлов и деталей, изготовленных с известной степенью точности. В процессе движения она испытывает различные возмущения, связанные с неспокойным состоянием атмосферы, неточностью работы силовой установки, различного рода помехи и т. п. Совокупность этих погрешностей, не предусмотренных расчётом, приводит к тому, что фактическое движение сильно отличается от идеального. Поэтому для эффективного управления ракетой необходимо устранить нежелательное влияние случайных возмущающих воздействий, или, как говорят, обеспечить устойчивость движения ракеты.











в) координаты, определяющие положение ракеты в пространстве.

Изучение разнообразных и сложных движений, совершаемых ракетой может быть значительно упрощено, если движение ракеты представить как сумму поступательного движения её центра тяжести и вращательного движения относительно центра тяжести. Примеры, приведенные выше, наглядно показывают, что для обеспечения устойчивости движения ракеты чрезвычайно важно иметь её устойчивость относительно центра тяжести, т. е. угловую стабилизацию ракеты. Вращение ракеты относительно центра тяжести можно представить как сумму вращательных движений относительно трёх перпендикулярных осей, имеющих определённую ориентацию в пространстве. На рис.№7 изображена идеальная оперенная ракета, летящая по рассчитанной траектории. Начало систем координат, относительно которой мы будем стабилизировать ракету, поместим в центр тяжести ракеты. Ось X направим по касательной к траектории в сторону движения ракеты. Ось Y проведём в плоскости траектории перпендикулярно к оси X, а ось

Z -перпендикулярно к первым двум осям, как показано на рис.№8.

С ракетой свяжем прямоугольную систему координат XYZ,аналогичную первой, причём ось Xдолжна совпадать с осью симметрии ракеты. В идеально стабилизированной ракете оси X ,Y ,Z совпадают с осями X, Y, Z, что показано на рис №8

Под действием возмущений ракета может поворачиваться вокруг каждой из ориентированных осей X, Y, Z. Поворот ракеты вокруг оси X называют креном ракеты. Угол крена  лежит в плоскости YOZ. Его можно определить, измерив в этой плоскости угол между осями Z и Z или Y и Y.Поворот вокруг оси

Y – рыскание ракеты. Угол рыскания  находится в плоскости XOZ как угол между осями X и Xили Z и Z . Угол поворота вокруг оси Z называют углом тангажа. Он определяется углом между осями X и X или Y и Y, лежащими в плоскости траектории.

(рис №8)

Автоматические устройства стабилизации ракеты должны придавать ей такое положение, когда  = 0 или . Для этого на ракете должны находиться чувствительные устройства, способные изменить её угловое положение.

Траектория ракеты в пространстве определяется текущими координатами

X, Y, Z её центра тяжести. За начало отсчёта берут точку старта ракеты. Для ракет дальнего действия за ось X принимают прямую, касательную к дуге большого круга, соединяющего старт с целью. Ось Y направляют при этом вверх, а ось Z- перпендикулярно к двум первым осям. Эта система координат называется земной (рис№9).

(Рис.№9)

Расчётная траектория баллистических ракет лежит в плоскости XOY, называемой плоскостью стрельбы, и определяется двумя координатами X и Y.










Невесомость


Мы живем в век начала освоения космоса, в век полётов космических кораблей вокруг Земли, на Луну и на другие планеты Солнечной системы. Нам часто приходится слышать и читать о том, что лётчики-космонавты и все предметы на космическом корабле во время его полёта находятся в особом состоянии, называемом состоянием невесомости. Само слово невесомость говорит о том, что у тела отсутствует вес, то есть оно не давит на опору и не растягивает подвес. Причина невесомости заключается в том, что сила всемирного тяготения (взаимное притяжение всех тел во Вселенной) сообщает телу и его опоре одинаковые ускорения. Поэтому всякое тело, которое движется под действием только силы всемирного тяготения, находится в состоянии невесомости.

Длительную невесомость человек испытывает в космосе, в космическом корабле, на орбитальной станции. Невесомость - главное отличие космической жизни от земной. Она влияет на всё: на кровообращение, дыхание, настроение, физиологические и биологические процессы. Невесомость - уникальное явление космического полёта. На Земле мы привыкли, если, например, дождевая капля упадёт с ветки или листа, то она обязательно попадёт на землю. На орбитальной станции всё иначе: лети, куда хочешь, и не упадёшь. Тяжесть - самое надежное качество, которым обладает каждый предмет на Земле. Тяжесть - это то, что природа распределила равномерно: поровну на каждую единицу массы. В течение всего времени орбитального полёта космонавты находятся в состоянии невесомости. Они теперь не ходят, а плавают, отталкиваясь как от опоры, от стен или от заземлённых предметов. Космонавты могут, образно говоря, ходить по потолку. Сила притяжения отсутствует, тело делается непривычно лёгким, при этом кровь тоже делается невесомой.

Несмотря на кажущуюся лёгкость, передвижение в невесомости - дело непростое. Оказавшись в невесомости, - рассказывает космонавт - у космонавта вся кровь и жидкость приливает в голову. Голова тяжёлая, заложен нос, глаза красные, плохо думается. После длительного полёта в невесомости организм космонавта испытывает резкий переход к большим перегрузкам, которые будут вызваны включением тормозной установки корабля. Длительное пребывание в невесомости - отрицательно сказывается на здоровье космонавта. Влияние невесомости на организм человека так полностью и не разгадано.

Невесомость можно испытывать не только в космосе, но и на Земле. Но на Земле может быть получена только кратковременная невесомость. Например, она наблюдается в первые 1-2 секунды при свободном падении тела. Невесомость возникает при прыжках на батуте: здесь она длится 1-2 секунды. Более длительную невесомость можно получить на самолёте, когда он движется по специальной траектории. Самолёт стремительно набирает высоту, потом двигатели выключают, он начинает падать, и здесь возникает невесомость, которая длится около минуты. Некоторое подобие статической невесомости возникает, когда человека помещают в бассейн с жидкостью, равной средней плотности его тела.

Рассмотрим невесомость на опытах: 1). Тело подвешено к пружине, конец которой закреплён. Представим себе, что нить, удерживающую пружину, пережгли. Теперь пружина вместе с грузом свободно падает. При этом мы замечаем, что растяжение исчезло. И пока пружина с телом падает, она остается нерастянутой. Следственно падающее тело не действует на падающую вместе с ним пружину и вес тела равен нулю, но сила тяжести не равна нулю, она по-прежнему действует на тело и заставляет его падать.

2). Между гирями закладывают полоску бумаги, свободный конец которой закрепляют в лапке штатива. Если медленно опускать груз, то полоска натягивается и рвется. Из этого следует, что бумажная полоска была достаточно сильно зажата грузами. Заменив порванную полоску бумаги на целую, грузу позволяют свободно падать. Бумажная полоска повисает при этом неповрежденной. Этот опыт показывает, что при свободном падении давление гири на опору отсутствует, то есть гиря при падении стала невесомой.


3). Одновременно с парашютистами с самолета сбросили большой пустой ящик. Два человека, тоже выпрыгнувшие из самолета пока не раскрывают парашютов. Они летят с такой же скоростью, что и ящик. Один парашютист протянул руку, схватился за летящий рядом ящик, открыл в нем дверцу и втянулся внутрь. Теперь из двух человек один летит, кувыркаясь внутри ящика, а другой снаружи. У них будут совершенно разные ощущения. Тот, который летит снаружи, видит и чувствует, что он стремительно летит вниз. В ушах у него свистит ветер. Вдали видна приближающая Земля. Мимо проносятся облака. А этот, который летит внутри ящика, закрыл дверцу, и начал, отталкиваясь от стенок "плавать" по ящику. Ему кажется, что ящик спокойно стоит на земле, а он, потеряв вес, плавает в воздухе, как рыба в аквариуме. Строго говоря, разницы между обоими парашютистами нет никакой. Оба с одной и той же скоростью летят к земле. Но один сказал бы: " Я лечу", а другой: " Я плаваю на месте". Дело в том, что один ориентируется по Земле, а другой по ящику, в котором летит. Вот именно так возникает состояние невесомости в кабине космического корабля.

Сейчас космонавты совершают длительные полеты. Но никто еще не может сказать с твердой уверенностью, что с невесомостью можно обращаться на "ты". Это явление, интересующее очень многих, требуемого и последовательного изучения.


















Перегрузки, испытываемые космонавтами в невесомости


При совершении космического полета космонавт подвергается воздействию ряда факторов: невесомость, перегрузки, шумы, вибрации, ограничение подвижности, изоляция, существование в замкнутом ограниченном пространстве и пр.

Ни одна профессиональная деятельность человека не связана с воздействием на него всех этих факторов в тех количественных соотношениях, как при полетах в космос. Так, состояние длительной невесомости, которое испытывает космонавт, не может быть испытано человеком в земных условиях.

В земных условиях человек может испытать только состояние кратковременной невесомости, например, если человек находится в лифте, движущемся по вертикали вниз с ускорением a = g.  Где g – ускорение свободного падения, т.е. ускорение силы тяжести.




 





Последние минуты экипажа 21-ой экспедиции на МКС на Земле
(17 сек./1.19Mb)

Уменьшить плеерДобавить видео в блог

Как и сила тяжести, ускорение свободного падения зависит от широты места j и высоты его над уровнем моря Н. Приблизительно ускорение свободного падения = 978,049 (1 + 0,005288 sin2j – 0,000006 sin22 j – 0,0003086 Н. На широте Москвы на уровне моря g = 981,56 см/сек.

Но при а = g – тело и лифт совершают свободное падение и никаких взаимных давлений друг на друга не оказывают, в результате организм воспринимает оказываемое на него давление как состояние невесомости.

Состояние космической невесомости имеет отличия от состояния невесомости в земных условиях, что вызывает изменения ряда его жизненных функций в организме человека. Так, невесомость ставит центральную нервную систему и рецепторы многих анализаторных систем (вестибулярного аппарата, мышечно-суставного аппарата, кровеносных сосудов) в необычные условия функционирования. Поэтому невесомость рассматривают как специфический интегральный раздражитель, действующий на организм человека и животного в течение всего орбитального полета. Ответом на этот раздражитель являются приспособительные процессы в физиологических системах; степень их проявления зависит от продолжительности невесомости и в значительно меньшей степени от индивидуальных особенностей организма.

С наступлением состояния невесомости у космонавта могут возникнуть вестибулярные расстройства, длительное время сохраняется чувство тяжести в области головы (за счет усиленного притока крови к ней). Вместе с тем адаптация к невесомости происходит, как правило, без серьезных осложнений: человек сохраняет работоспособность и успешно выполняет различные рабочие операции, в том числе те из них, которые требуют тонкой координации или больших затрат энергии. Двигательная активность в состоянии невесомости требует гораздо меньших энергетических затрат, чем аналогичные движения в условиях весомости.

Если в полете не применяются средства профилактики, то в первые часы и сутки после приземления (период реадаптации к земным условиям) у человека, совершившего длительный космический полет, наблюдается следующий комплекс изменений:

1. Нарушение процессов обмена веществ, особенно водно-солевого обмена, что сопровождается относительным обезвоживанием тканей, снижением объема циркулирующей крови, уменьшением содержания в тканях ряда элементов, в частности калия и кальция;
2. Нарушение кислородного режима организма при физических нагрузках;
3. Нарушение способности поддерживать вертикальную позу в статике и динамике; ощущение тяжести частей тела (окружающие предметы воспринимаются как необычно тяжелые; наблюдается растренированность в дозировании мышечных усилий);
4. Нарушение гемодинамики при работе средней и высокой интенсивности; возможны предобморочные и обморочные состояния после перехода из горизонтального положения в вертикальное;
5. Снижение иммунобиологической резистентности (ослабление иммунитета);
 вестибуловегетативные расстройства.











Установка "Союз ТМА-16" на стартовую площадку
(104 сек./7.27Mb)

Уменьшить плеерДобавить видео в блог

Нарушения работы организма человека, вызванные невесомостью, обратимы. Ускоренное восстановление нормальных функций может быть достигнуто с помощью физиотерапии и лечебной физкультуры, а также применением лекарственных препаратов. Неблагоприятное влияние невесомости на организм человека в полете можно предупредить или ограничить с помощью различных средств и методов (мышечная тренировка, электростимуляция мышц, отрицательное давление, приложенное к нижней половине тела, фармакологические и др. средства).

Другим фактором, оказывающим значительное влияние на человеческий организм при совершении космического полета, являются перегрузки.

Перегрузки космонавт испытывает при старте и возвращении космического корабля.

При старте на космонавта действует ускорение, величина которого изменяется от 1 до 7 g. Другими словами, вес космонавта во время запуска корабля как бы увеличивается в семь раз.

Человек легче всего переносит перегрузки, действующие в горизонтальной плоскости, хуже – в вертикальной. Однако способность переносить перегрузки (величина допустимых перегрузок) у разных людей различна и зависит от ряда факторов, например от скорости нарастания перегрузки, температуры окружающей среды, содержания кислорода во вдыхаемом воздухе, длительности пребывания космонавта в условиях невесомости до начала ускорения и даже от эмоционального состояния космонавта. Существуют, несомненно, и другие более сложные или менее уловимые факторы, влияние которых еще не совсем выяснено.

Перегрузки, связанные с ускорением, вызывают значительное ухудшение функционального состояния организма человека: замедляется ток крови в системе кровообращения, снижаются острота зрения и мышечная активность.

Под действием ускорения, превышающего 1 g, у космонавта могут появиться нарушения зрения. При ускорении 3 g в вертикальном направлении, длящемся более 3 секунд, могут возникнуть серьезные нарушения периферического зрения.

С увеличением перегрузок острота зрения уменьшается, поэтому в отсеках космического корабля необходимо увеличивать уровень освещенности. При продольном ускорении у космонавта возникают зрительные иллюзии. Ему кажется, что предмет, на который он смотрит, смещается в направлении результирующего вектора ускорения и силы тяжести.

При угловых ускорениях возникает кажущееся перемещение объекта зрения в плоскости вращения. Эта так называемая окологиральная иллюзия является следствием воздействия перегрузок на полукружные каналы (органы внутреннего уха).

Чтобы ослабить действие высоких ускорений, космонавта помещают в космическом корабле таким образом, чтобы перегрузки были направлены по горизонтальной оси.









Сборка пилотируемого корабля "Союз ТМА-16"
(53 сек./3.73Mb)

Уменьшить плеерДобавить видео в блог

Страницы: 1, 2, 3, 4


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.