рефераты скачать

МЕНЮ


Люминесцентные свойства нанокристаллов сульфида кадмия

Люминесцентные свойства нанокристаллов сульфида кадмия

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ОДЕССКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ                                   им. И.И. МЕЧНИКОВА

Кафедра экспериментальной физики

ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА НАНОКРИСТАЛЛОВ СУЛЬФИДА КАДМИЯ

Допустить к защите

Заведующий кафедрой экспериментальной физики

Академик Смынтына В. А.

«….» ………………….

Дипломная работа

студентки V курса

физического факультета

Федоновой Дины Сергеевны

Научный руководитель

Доцент Скобеева В.М.

ОДЕССА - 2004

СОДЕРЖАНИЕ


ВВЕДЕНИЕ. 3

1.ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА СУЛЬФИДА КАДМИЯ.. 5

1.1. Эффект  размерного квантования в полупроводниках. 5

1.2. Методы получения и оптические свойства наночастиц сульфида кадмия. 7

1.3.Люминесценция нанокристаллов сульфида кадмия, внедренных в полимер  16

1.4.Влияние внешних факторов на люминесценцию.. 21

нанокристаллов соединений А2В6

2. ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ     ЛЮМИНЕСЦЕНЦИИ НАНОКРИСТАЛЛОВ CdS, ВЫРАЩЕННЫХ В ЖЕЛАТИНЕ. 24

2.1. Методика эксперимента. 24

2.2. Люминесцентные характеристики нанокристаллов CdS. 28

2.3.Эволюция спектров люминесценции нанокристаллов CdS в процессе их «старения»  38

2.4.Влияние обработок на спектр люминесценции нанокристаллов CdS. 40

2.5. Обсуждение результатов. 45

ВЫВОДЫ.. 47

ЛИТЕРАТУРА.. 48

ВВЕДЕНИЕ


В  настоящее   время   наблюдается   интенсивное   развитие   физики полупроводников, размеры которых порядка нанометров. Полупроводниковые  наноразмерные частицы находятся в области   перехода между молекулярной структурой и твердым телом. Оптические,   электронные и каталитические свойства полупроводникового нанокристалла существенно отличаются от таковых  для   макрокристаллического   вещества   и   зависят от   размера   частицы (эффект   размерного   квантования).   Такие полупроводники дают возможность управлять их оптическими, электрическими  и   структурными   свойствами,   изменяя   размеры   частиц.   Особенно сильное изменение оптических свойств   наблюдается   в   случае,   когда размер   нанокристалла   меньше,   чем   диаметр   основного   экситона.

С тех пор, как эффект размерного квантования был впервые обнаружен, научные исследования этого явления стремительно  развиваются. Некоторые группы ученых уже   показали   возможные   сферы   применения   таких материалов: солнечные элементы, светодиоды, точечные  транзисторы, светофильтры,   полосу поглощения   которых   можно   изменять   только изменением размеров частиц. А также как новый класс - нелинейные оптические   материалы.

В случае точечных транзисторов, применение основано на дискретности электронных уровней полупроводника в   сильно-квантованном   режиме.

На сегодняшний день   качество   образцов   значительно   улучшается,   теперь   существует   возможность   приготовить   нанокристалл   любого   диаметра   в   пределах   от   2-5   до   50   нм   с   ошибкой   не   менее   5%.

В связи с  таким   бурным   развитием   данного   направления   физики   полупроводников возникает необходимость изучения свойств полупроводниковых   нанокристаллов. Особо актуальным является  вопрос о стабильности  оптических и люминесцентных характеристик нанокристаллов в процессе их хранения.

В связи с вышеизложенным  целью моей работы являлось изучение люминесцентных  свойств нанокристаллов сульфида кадмия  и исследование зависимости полос люминесценции от воздействия внешних факторов.

1.ЛЮМИНЕСЦЕНТНЫЕ СВОЙСТВА СУЛЬФИДА КАДМИЯ

1.1. Эффект размерного квантования в полупроводниках

В последние годы появились эксперименты [1-3, 4-9], в которых исследуются оптические свойства систем, представляющих диэлектрическую матрицу с вкрапленными в нее частицами полупроводника. Технология этих систем такова, что полупроводниковые частички с достаточно хорошей точностью можно считать шарообразными, причем дисперсия их радиусов сравнительно невелика. Очень важно, что технология позволяет получать системы, в которых средний радиус полупроводниковых частиц меняется практически непрерывно. Поэтому исследования оптических свойств этих систем в зависимости от радиуса шаров представляет мощный метод изучения параметров полупроводников, в значительной мере аналогичный магнитооптическому.

В полупроводниковом шаре возникает размерное квантование электронных и дырочных состояний, приводящих к тому, что оптические линии смещаются в зависимости от радиуса шара [1-3]. Авторы предлагают здесь теоретическое описание этого явления в рамках простейшей модели, использующей стандартную зонную схему.

Предполагалось, что зоны электронов и дырок имеют параболическую форму с массами me и  mh соответственно,   причем me<<mh. Тогда характер размерного квантования определяется соотношением трех длин: a, ae, ah, где ae>ah; а – радиус шара, ae, ah – боровские радиусы электронов и дырок, соответственно, в полупроводнике с диэлектрической проницаемостью e. Предполагаемая теория построена в приближении метода эффективной массы, т.е. в предположении, что существенные длины велики по сравнению с постоянной решетки. Волновая функция электронов и дырок будет считаться равной нулю на поверхности шара, что соответствует бесконечно высокой потенциальной стенке.

Рассмотрим случай сильного размерного квантования, когда a>>ah. Расстояние между уровнями размерного квантования для электронов и дырок порядка ħ2/(me·a2) и ħ2/(mh·a2).

При межзонном поглощении должна наблюдаться серия дискретных линий. Порогом поглощения является величина

                  (1.1),

где - ширина запрещенной зоны; - приведенная масса.

Учет дисперсии шаров по размерам приводит к замене выражения для порога поглощения (1.1) на следующее:

           (1.2).

Отсюда виден закон, по которому эффективная ширина запрещенной зоны увеличивается с уменьшение радиуса шара а, прочие линии сдвигаются в коротковолновую сторону по закону

              (1.3),

где  - корни функции Бесселя.

Если ширина линий сравнима с расстоянием между ними, то размерное квантование должно проявляться апериодическими осцилляциями поглощения, причем максимумы осцилляций должны сдвигаться в коротковолновую сторону по закону  1/а2.

 

1.2. Методы получения и оптические свойства наночастиц сульфида кадмия

Как было недавно обнаружено [6], трехмерные микрокристаллы полупроводниковых соединений могут быть выращены в объеме прозрачной диэлектрической матрицы  силикатного стекла, и их образование может быть непосредственно детектировано по спектрам оптического поглощения. При этом оказалось, что средний размер микрокристаллов в матрице можно направленно менять в процессе выращивания в широких пределах от десятков до нескольких сотен ангстрем.

Синтез полупроводниковых соединений в диэлектрической матрице, кроме принципиально важной возможности получения кристаллов микроскопических размеров, имеет еще одно преимущество. Действительно, поскольку концентрации кристаллической фазы в матрице относительно невелика, оказывается возможной непосредственно записывать  спектры поглощения кристаллов на относительно толстых образцах, получаемых механической полировкой [3]. Таким образом, подобные гетерогенные стекла оказываются новым, чрезвычайно удобным объектом для исследования размерных эффектов в полупроводниках.

В работе [6] рассматривается выращивание микрокристаллов в многокомпонентном силикатном стекле, в котором полупроводниковая фаза, концентрации приблизительно 1%, была растворена в течение синтеза. При вторичной термической обработке стеклянных образцов зародышеобразование и рост полупроводниковых микрокристаллов происходит в результате диффузионного фазового разложения пересыщенного твердого раствора.

На рис.1.1 показана экспериментальная зависимость среднего радиуса микрокристалла CdS как функция  времени нагрева для ряда температур. Величина среднего радиуса микрокристалла для образца была определена методом малоуглового рентгеновского рассеяния в аппроксимации сферических частиц. Наблюдаемые зависимости описаны выражением, полученным в теоретической статье для диффузного фазового разложения пересыщенного твердого раствора в стадии переконденсации:

               (1.4),

где - коэффициент диффузии, α – коэффициент,  который определен граничным поверхностным натяжением, и t – время термообработки. Таким образом, выбирая надлежащие условия термической обработки (температура и время), можно варьировать размер микрокристаллов управляемым способом [7]. Было также показано, что

Рис. 1.1. Зависимость среднего радиуса микрокристалла CdS  от времени нагрева t при различных температурах термообработки [7].


стадия роста переконденсации характеризуется стационарным (установившимся) состоянием распределения по размерам, которое не зависит от начальных условий, и для этого распределения было получено аналитическое выражение. Это выражение фактически описывает распределение по размерам полупроводниковых частиц, выращенных по рассматриваемой методике [6]. Этот факт дает возможность принять во внимание дисперсию размеров микрокристаллов при выполнении количественного анализа экспериментальных результатов, рассмотренную в этом параграфе.

Также наночастицы CdS получали [10, 11] путем быстрого смешивания при комнатной температуре водных растворов сульфата кадмия, содержащих стабилизатор с эквимолярными количествами сульфида натрия в небольшом объеме воды. В качестве стабилизаторов использовали желатин и поливиниловый спирт (ПВС). Величина смещения края  полосы поглощения, как показали опыты, зависит от природы стабилизатора, его количества, а так же от содержания образовавшегося сульфида кадмия. У частиц, стабилизированных добавками ПВС, она невелика и составляет лишь 15-20 нм (рис.1.2 а, спектр 1) , тогда как при стабилизации желатином край полосы поглощения может сдвигаться на 60 нм (рис.1.2 а, спектр 3) и даже больше. Использование корреляционной зависимости между пороговой длиной волны поглощения и диаметром кристаллита позволило получить оценочные величина среднего размера частиц, характеризующихся спектрами 1 и 3 (рис.1.2 а). Они имеют значения, близкие к 5 нм и к 3 нм, соответственно. Необходимо отметить при этом, что наличие в спектре (рис.1.2) достаточно хорошо разрешенного экситонного пика при 360 нм может служить указанием на относительно узкое распределение частиц по размерам в растворах, стабилизированных желатином. При большей концентрации CdS этот пик становится менее выраженным, появляется дополнительное поглощение в области 370-450 нм и край полосы, характеризующийся максимумом при 360 нм, поскольку смещается в длинноволновую сторону (рис.1.2 а, спектр 2). Все это свидетельствует о том, что наряду с частицами, которым принадлежит спектр 3, присутствуют также более крупные образования.

Как видно из рис.1.2 б, на спектры поглощения коллоидных растворов CdS существенное влияние оказывает концентрация желатина. В растворах, содержащих 0.5 и 0.25% желатина, образуются наборы малых частиц с узким распределением по размерам (спектры 1 и 2). При переходе к более разбавленным растворам происходят изменения, подобные тем, которые наблюдаются при повышении концентрации CdS (спектры 3 и 4), а при стабилизации 0.01% желатином получаются частицы, которые, судя по краю полосы, расположенному около 500 нм, имеют диаметр, близкий к 5 нм (спектр 5). В противоположность рассмотренному случаю, варьирование  концентрации ПВС от 0.1 до 5% практически не влияет на спектры поглощения; они во всех случаях остаются такими же, как спектр 1 на рис. 1.2,а.

б

 

а

 
 

Рис. 1.2. Изменение спектров поглощения растворов наночастиц сульфида кадмия в зависимости от концентрации CdS и природы стабилизатора (а), концентрации желатина (б): а: 1, 3 – концентрация CdS 5·10-4 моль/л; 2 – 1*10-3 моль/л (стабилизаторы: 1 – 1% поливиниловый спирт, 2,3 – 0.5% желатина; толщина слоя: 1,3 – 1 см; 2 – 0.5 см); б: 1 - концентрация желатина 0.5%; 2 – 0.25%; 3 – 0.1%; 4 – 0.05%; 5 – 0.01% (концентрация CdS 5·10-4 моль/л) [7].

В работе [6] была развита методика выращивания полупроводниковых микрокристаллов в стеклянной диэлектрической матрице. Эта методика позволяет варьировать размер выращенных микрокристаллов управляемым способом от нескольких десятков до тысяч ангстрем. Изучалась размерная зависимость спектров поглощения  соединений А2В6. Наблюдался с уменьшением размера микрокристаллов значительный сдвиг в коротковолновую сторону линий экситона и фундаментального края поглощения. Это явление обусловлено квантово-размерным эффектом свободных носителей и энергетических спектров экситона в микрокристаллах.

Гетерофазные системы представляют интерес как  новый класс объектов, которые могут использоваться для исследования квантово-размерного эффекта в полупроводниках [6]. Фактически микрокристалл в диэлектрической матрице можно трактовать, как трехмерную потенциальную яму для электронов, дырок, экситонов и т.д. Глубина ямы в таких системах может быть порядка нескольких электронвольт. Так как квазичастицы имеют ограниченное пространство, чтобы двигаться, их движение возможно только для определенных значений энергии; таким образом, их энергетический спектр квантован. Наблюдалось, что квантово-размерный эффект в таких системах проявляется как коротковолновое смещение спектров с уменьшением размеров микрокристаллов. Величина квантово-размерного смещения строго зависит от кулоновского взаимодействия электронов и дырок. Имеются два случая ограничений: первый – когда микрокристаллический размер а гораздо меньше чем радиус  экситона аех (а<<aex) и сдвиг края поглощения обусловлен квантованием свободных носителей; второй – когда аех<<a и происходит квантование размера экситонов.

Авторы [6] подробно рассматривают первый случай.

Размерное квантование энергетического спектра носителей изучалось в стеклах, содержащих соединения А2В6, в которых радиус экситонов большой (аex=30Å для CdS). Рисунок 1.3 показывает спектры поглощения стекловидных образцов, отличающихся средним радиусом выращенных микрокристаллов CdS. Как можно заметить, экситонная структура исчезает, когда размер  микрокристаллов сопоставим с радиусом экситона. При уменьшении размера появляется коротковолновый сдвиг края поглощения, а также колебательная структура в спектрах поглощения. Замечено [6], что ширина запрещенной зоны микрокристаллов CdS возрастает, благодаря квантово-размерному эффекту, до значения Eg=3.2 эВ.

Положение абсорбционных линий, обусловленных межзонными переходами на квантовые подуровни зоны проводимости как функция размера микрокристаллов, которая была рассчитана по выражению (1.2).

В некоторых случаях полимерные пленки были подвергнуты одноосному натяжению  для изменения размера полимерных пор. Микроскопические наблюдения [2] показали, что CdS полимерные композиты имеют слоистую структуру. Имеется полимерный слой желтого цвета вблизи поверхности полимерной пленки, который содержит кластеры CdS и бесцветный полимерный слой в середине пленки, не содержащей CdS.

Типичная ширина полимерного слоя с CdS около 10 мкм, в то время, как вся ширина полимерного слоя около 100 мкм. Объемная концентрация была рассчитана для полимерного слоя CdS, так как образцы имели слоистую структуру. Величина концентрации CdS в пленках варьировалась от 0.5%

до 90%, а объемная концентрация CdS в полимерном слое с CdS- от 0.1 объемного процента до 50 объемных процентов. Дифрактограмма рентгеновских лучей показывает модель гексагонального CdS. Наблюдалось отражение в пределах 2q– 52˚, 44˚, 26.5˚ и 24˚. Уширение линии дифракционного сигнала при 44˚ было использовано для расчета .

Рис.1.3. Зависимость спектра поглощения микрокристалла CdS от размера:  (1) -320 Ǻ ; (2) - 23 Ǻ ; (3) – 15 Ǻ; (4) – 12 Ǻ [6].


диаметра (размера) частиц CdS. При высокой концентрации (~10%) среднее значение расстояния между частицами было такого же порядка, как и их размер (диаметр). При максимальных концентрациях CdS возможно существование агрегатов кластеров.

В образцах, подвергнутых одноосному натяжению [1 0 0 ], отражение Х-лучей при 24˚ наблюдалось при незначительно меньшем угле, чем в макрокристаллическом материале (где оно локализовано при 24.8˚) и интенсивность этого отражения была повышена более чем на один порядок. Его уширение было также в 1.2-2 раза меньше, чем других отражений. Эти результаты можно, вероятно, объяснить, если предположить существование ориентации кластеров CdS, и что среднее значение размера частицы удлиняется в направлении растяжения, т.е. существует текстура нанокомпонетов. Такое изменение кластеров может быть объяснено аномальной деформацией пор в полимерных пленках в растянутой  пленке и ростом ядра кластера с преимущественной ориентацией в направлении [1 0 0] в этих растянутых порах.

Оптические исследования были сделаны в ультрафиолетовой  и видимых областях [2]. Нормированный коэффициент объемного поглощения CdS определяется из спектра поглощения, принимая во внимание расчет поглощения полимера. В случае прямых разрешенных оптических переходов  между параболическими зонами, если зависимость (k(x))1/2 от   (где k(x) – коэффициент поглощения) известна, можно определить ширину запрещенной зоны Eg. В этом случае Eg была определена для всех образцов  с различными концентрациями CdS. При низких концентрациях (~0.8%) Eg была больше, чем в объеме. Этот  эффект, вероятно, может быть причиной размерного квантования электронов (дырок) в малых кластерах. Для больших концентраций CdS (>10%) Eg меньше, чем в объеме CdS [2].

Спектр люминесценции CdS в полимере был исследован при комнатной температуре и температуре жидкого азота. Пик в спектре Емах сдвигается в сторону меньших энергий, когда объемная концентрация CdS возрастает. Для максимума величин концентраций  (20-30 объемных процентов) пик люминесценции сдвигается до 0.7 эВ. Таким образом, как положение пика люминесценции, так и Eg , зависят от концентрации CdS матрицы. Полуширина спектра находится около 1 эв для малых концентраций и убывает до 0.5 эВ для больших. Интенсивность люминесценции убывает значительно при высоких концентрациях, и, следовательно, для этих композитов наблюдается концентрационное тушение люминесценции.

Убывание Eg может быть интерпретировано как влияние диполь дипольного  электрического взаимодействия в кластерах. Расчет показывает, что при высоких концентрациях кластеров электрическое поле внутри кластера, обуславливающее это взаимодействие, может быть 0.5 * 107 В/см. Следовательно, уменьшение Eg, обусловленное эффектом Франца-Келдыша, может быть значительно больше в случае экспериментально наблюдаемого эффекта. Уменьшение интенсивности люминесценции при высоких концентрациях можно также интерпретировать как результат передачи электронно-дырочного возбуждения от одного кластера к другому, обусловленного электрическим взаимодействием.


1.3.Люминесценция нанокристаллов сульфида кадмия, внедренных в полимер

В работах [10, 11] приведены исследования люминесценции наночастиц CdS, которые были  получены путем быстрого смешивания при комнатной температуре водных растворов сульфата кадмия, содержащих стабилизатор с эквимолярными количествами сульфида натрия в небольшом объеме воды. В качестве стабилизаторов использовали желатин и поливиниловый спирт (ПВС).

Спектр испускания образцов CdS/полимер представляет собой  широкую бесструктурную полосу с λ=630 нм (рис.1.4), т. е. на 40 нм сдвинут  в более коротковолновую область по сравнении со спектром образцов CdS– ПВС.

Наличие в растворе избытка сульфид ионов CdS-поливиниловый спирт (ПВС) тушит люминесценцию [11], в то время как добавление ионов Сd2+ не оказывает заметного влияния на спектральные и кинетические особенности  люминесценции. Указанное положение максимума спектра испускания  люминесценции соответствует донорному уровню, находящемуся на  0,55 эВ ниже дна зоны проводимости.

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.