рефераты скачать

МЕНЮ


Лекции по ТОЭ

p>
| Теория / ТОЭ / Лекция N 4. Элементы цепи синусоидального тока. Векторные |
|диаграммы и комплексные соотношения для них. |

|1. Резистор |
|Идеальный резистивный элемент не обладает ни индуктивностью, ни емкостью. Если к нему|
|приложить синусоидальное напряжение [pic] (см. рис. 1), то ток i через него будет |
|равен |
|[pic]. |
|(1) |
| |
|Соотношение (1) показывает, что ток имеет ту же начальную фазу, что и напряжение. |
|Таким образом, если на входе двухлучевого осциллографа подать сигналы u и i, то |
|соответствующие им синусоиды на его экране будут проходить (см. рис. 2) через нуль |
|одновременно, т.е. на резисторе напряжение и ток совпадают по фазе. |
|Из (1) вытекает: |
|[pic]; |
|[pic]. |
| |
| |
|[pic] |
|Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам:|
| |
|[pic]; |
|[pic], |
|- разделим первый из них на второй: |
|[pic] |
|или |
|[pic]. |
|(2) |
| |
|Полученный результат показывает, что отношение двух комплексов есть вещественная |
|константа. Следовательно, соответствующие им векторы напряжения и тока (см. рис. 3) |
|совпадают по направлению. |
| |
|2. Конденсатор |
|Идеальный емкостный элемент не обладает ни активным сопротивлением (проводимостью), |
|ни индуктивностью. Если к нему приложить синусоидальное напряжение [pic] (см. рис. |
|4), то ток i через него будет равен |
|[pic]. |
|(3) |
| |
| |
|Полученный результат показывает, что напряжение на конденсаторе отстает по фазе от |
|тока на [pic]/2. Таким образом, если на входы двухлучевого осциллографа подать |
|сигналы u и i, то на его экране будет иметь место картинка, соответствующая рис. 5.|
| |
|Из (3) вытекает: |
|[pic]; |
| |
|[pic]. |
| |
| |
|[pic] |
|Введенный параметр [pic] называют реактивным емкостным сопротивлением конденсатора. |
|Как и резистивное сопротивление, [pic] имеет размерность Ом. Однако в отличие от R |
|данный параметр является функцией частоты, что иллюстрирует рис. 6. Из рис. 6 |
|вытекает, что при [pic] конденсатор представляет разрыв для тока, а при [pic] [pic].|
| |
|Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам:|
| |
|[pic]; |
|[pic], |
|- разделим первый из них на второй: |
|[pic] |
|или |
|[pic]. |
|(4) |
| |
| |
|В последнем соотношении [pic] - комплексное сопротивление конденсатора. Умножение на |
|[pic] соответствует повороту вектора на угол [pic] по часовой стрелке. Следовательно,|
|уравнению (4) соответствует векторная диаграмма, представленная на рис. 7. |
| |
|3. Катушка индуктивности |
|Идеальный индуктивный элемент не обладает ни активным сопротивлением, ни емкостью. |
|Пусть протекающий через него ток (см. рис. 8) определяется выражением [pic]. Тогда |
|для напряжения на зажимах катушки индуктивности можно записать |
|[pic]. |
|(5) |
| |
|Полученный результат показывает, что напряжение на катушке индуктивности опережает по|
|фазе ток на [pic]/2. Таким образом, если на входы двухлучевого осциллографа подать |
|сигналы u и i, то на его экране (идеальный индуктивный элемент) будет иметь место |
|картинка, соответствующая рис. 9. |
|Из (5) вытекает: |
|[pic] |
| |
| |
| |
| |
|[pic] |
| |
| |
|[pic]. |
|Введенный параметр [pic] называют реактивным индуктивным сопротивлением катушки; его |
|размерность – Ом. Как и у емкостного элемента этот параметр является функцией |
|частоты. Однако в данном случае эта зависимость имеет линейный характер, что |
|иллюстрирует рис. 10. Из рис. 10 вытекает, что при [pic] катушка индуктивности не |
|оказывает сопротивления протекающему через него току, и при [pic] [pic]. |
|Переходя от синусоидальных функций напряжения и тока к соответствующим комплексам: |
|[pic]; |
|[pic], |
|разделим первый из них на второй: |
|[pic] |
|или |
|[pic]. |
|(6) |
| |
|В полученном соотношении [pic] - комплексное |
|сопротивление катушки индуктивности. Умножение на [pic] соответствует повороту |
|вектора на угол [pic] против часовой стрелки. Следовательно, уравнению (6) |
|соответствует векторная диаграмма, представленная на рис. 11 |
| |
|. 4. Последовательное соединение резистивного и индуктивного элементов |
| |
|Пусть в ветви на рис. 12 [pic]. Тогда |
|[pic]где |
|[pic], причем пределы изменения [pic]. |
|Уравнению (7) можно поставить в соответствие соотношение |
|[pic], |
|[pic] |
| |
| |
|которому, в свою очередь, соответствует векторная диаграмма на рис. 13. Векторы на |
|рис. 13 образуют фигуру, называемую треугольником напряжений. Аналогично выражение |
|[pic] |
|графически может быть представлено треугольником сопротивлений (см. рис. 14), который|
|подобен треугольнику напряжений. |
| |
|5. Последовательное соединение резистивного и емкостного элементов |
| |
|Опуская промежуточные выкладки, с использованием соотношений (2) и (4) для ветви на|
|рис. 15 можно записать |
|. [pic], |
|(8) |
| |
|где |
|[pic][pic], причем пределы изменения [pic]. |
| |
| |
| |
|[pic] |
| |
| |
|На основании уравнения (7) могут быть построены треугольники напряжений (см. рис. 16)|
|и сопротивлений (см. рис. 17), которые являются подобными. |
| |
| |
|6. Параллельное соединение резистивного и емкостного элементов |
| |
|Для цепи на рис. 18 имеют место соотношения: |
| [pic]; |
|[pic], где [pic] [См] – активная проводимость; |
| [pic], где [pic] [См] – реактивная проводимость конденсатора. |
| |
| |
| |
|[pic] |
| |
| |
| |
|Векторная диаграмма токов для данной цепи, называемая треугольником токов, приведена |
|на рис. 19. Ей соответствует уравнение в комплексной форме |
|[pic], |
|где [pic]; |
| [pic] - комплексная проводимость; |
| [pic]. |
|Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 20. |
|Для комплексного сопротивления цепи на рис. 18 можно записать |
|[pic]. |
|Необходимо отметить, что полученный результат аналогичен известному из курса физики |
|выражению для эквивалентного сопротивления двух параллельно соединенных резисторов. |
|7. Параллельное соединение резистивного и индуктивного элементов |
| |
|Для цепи на рис. 21 можно записать |
|[pic]; |
| [pic], где [pic] [См] – активная проводимость; |
|[pic], где [pic] [См] – реактивная проводимость катушки индуктивности. |
|Векторной диаграмме токов (рис. 22) для данной цепи соответствует уравнение в |
|комплексной форме |
|[pic], |
|где [pic]; |
| [pic] - комплексная проводимость; |
| [pic]. |
|Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 23. |
| |
| |
| |
|[pic] |
| |
| |
|Выражение комплексного сопротивления цепи на рис. 21 имеет вид: |
|[pic]. |
|Литература |
|1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, |
|С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с. |
|2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. |
|для студентов электротехнических, энергетических и приборостроительных специальностей|
|вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с. |
|Контрольные вопросы и задачи |
|1. В чем сущность реактивных сопротивлений? |
|2. Какой из элементов: резистор, катушку индуктивности или конденсатор – можно |
|использовать в качестве шунта для наблюдения за формой тока? |
|3. Почему катушки индуктивности и конденсаторы не используются в цепях |
|постоянного тока? |
|4. В ветви на рис. 12 [pic]. Определить комплексное сопротивление ветви, если |
|частота тока [pic]. |
|Ответ: [pic]. |
|5. В ветви на рис. 15 [pic]. Определить комплексное сопротивление ветви, если |
|частота тока [pic]. |
|Ответ: [pic]. |
|6. В цепи на рис. 18 [pic]. Определить комплексные проводимость и сопротивление |
|цепи для [pic]. |
|Ответ: [pic]; [pic]. |
|7. Протекающий через катушку индуктивности [pic] ток изменяется по закону |
|[pic] А. Определить комплекс действующего значения напряжения на катушке. |
|Ответ: [pic]. |


| Теория / ТОЭ / Лекция N 5. Закон Ома для участка цепи с источником ЭДС. |

| |
| |
| |
|[pic] |
| |
| |
|Возьмем два участка цепи a-b и c-d (см. рис. 1) и составим для них уравнения в |
|комплексной форме с учетом указанных на рис. 1 положительных направлений напряжений и|
|токов. |
| [pic] [pic] |
|Объединяя оба случая, получим |
|[pic] |
|(1) |
| |
|или для постоянного тока |
|[pic]. |
|(2) |
| |
| |
|Формулы (1) и (2) являются аналитическим выражением закона Ома для участка цепи с |
|источником ЭДС, согласно которому ток на участке цепи с источником ЭДС равен |
|алгебраической сумме напряжения на зажимах участка цепи и ЭДС, деленной на |
|сопротивление участка. В случае переменного тока все указанные величины суть |
|комплексы. При этом ЭДС и напряжение берут со знаком “+”, если их направление |
|совпадает с выбранным направлением тока, и со знаком “-”, если их направление |
|противоположно направлению тока. |
| |
|Основы символического метода расчета цепей |
|синусоидального тока |
| |
|Расчет цепей переменного синусоидального тока может производиться не только путем |
|построения векторных диаграмм, но и аналитически – путем операций с комплексами, |
|символически изображающими синусоидальные ЭДС, напряжения и токи. Достоинством |
|векторных диаграмм является их наглядность, недостатком – малая точность графических |
|построений. Применение символического метода позволяет производить расчеты цепей с |
|большой степенью точности. |
|Символический метод расчета цепей синусоидального тока основан на законах Кирхгофа и |
|законе Ома в комплексной форме. |
|Уравнения, выражающие законы Кирхгофа в комплексной форме, имеют совершенно такой же |
|вид, как и соответствующие уравнения для цепей постоянного тока. Только токи, ЭДС, |
|напряжения и сопротивления входят в уравнение в виде комплексных величин. |
|1. Первый закон Кирхгофа в комплексной форме: |
|[pic]. |
|(3) |
| |
| |
|2. Второй закон Кирхгофа в комплексной форме: |
|[pic] |
|(4) |
| |
| |
|или применительно к схемам замещения с источниками ЭДС |
|[pic]. |
|(5) |
| |
| |
|3. Соответственно матричная запись законов Кирхгофа в комплексной форме имеет |
|вид: |
|. первый закон Кирхгофа: |
|.[pic] ; |
|(6) |
| |
| |
|. второй закон Кирхгофа |
|[pic]. |
|(7) |
| |
| |
|Пример. |
|Дано: |
|[pic] |
|[pic][pic][pic] |
| |
| |
|[pic][pic][pic] |
| |
| |
|Определить: |
|1) полное комплексное сопротивление цепи [pic]; |
| |
| |
| |
| |
|2) токи [pic] |
| |
| |
|Рис. 2 |
| |
| |
|Решение: |
| |
|1. [pic]. |
|2. [pic]. |
|3. [pic] |
| [pic]. |
|4. Принимая начальную фазу напряжения за нуль, запишем: |
|[pic]. |
|Тогда |
|[pic]. |
|5. Поскольку ток распределяется обратно пропорционально сопротивлению ветвей (это|
|вытекает из закона Ома), то |
|[pic] |
|6. [pic]. |
|7. Аналогичный результат можно получить, составив для данной схемы уравнения по |
|законам Кирхгофа в комплексной форме |
|[pic] |
| |
|[pic] |
| |
|или после подстановки численных значений параметров схемы |
| |
|Специальные методы расчета |
| |
|Режим работы любой цепи полностью характеризуется уравнениями, составленными на |
|основании законов Кирхгофа. При этом необходимо составить и решить систему с n |
|неизвестными, что может оказаться весьма трудоемкой задачей при большом числе n |
|ветвей схемы. Однако, число уравнений, подлежащих решению, может быть сокращено, если|
|воспользоваться специальными методами расчета, к которым относятся методы контурных |
|токов и узловых потенциалов. |
| |
|Метод контурных токов |
|Идея метода контурных токов: уравнения составляются только по второму закону |
|Кирхгофа, но не для действительных, а для воображаемых токов, циркулирующих по |
|замкнутым контурам, т.е. в случае выбора главных контуров равных токам ветвей связи. |
|Число уравнений равно числу независимых контуров, т.е. числу ветвей связи графа |
|[pic]. Первый закон Кирхгофа выполняется автоматически. Контуры можно выбирать |
|произвольно, лишь бы их число было равно [pic] и чтобы каждый новый контур содержал |
|хотя бы одну ветвь, не входящую в предыдущие. Такие контуры называются независимыми. |
|Их выбор облегчает использование топологических понятий дерева и ветвей связи. |
|Направления истинных и контурных токов выбираются произвольно. Выбор положительных |
|направлений перед началом расчета может не определять действительные направления |
|токов в цепи. Если в результате расчета какой-либо из токов, как и при использовании |
|уравнений по законам Кирхгофа, получится со знаком “-”, это означает, что его |
|истинное направление противоположно. |
|Пусть имеем схему по рис. 3. |
|Выразим токи ветвей через контурные токи: |
| [pic]; |
| [pic]; [pic]; |
| [pic]; [pic]. |
|Обойдя контур aeda, по второму закону Кирхгофа имеем |
|[pic]. |
|Поскольку [pic], |
|то |
|[pic]. |
|Таким образом, получили уравнение для первого контура относительно контурных токов. |
|Аналогично можно составить уравнения для второго, третьего и четвертого контуров: |
|[pic] |
|совместно с первым решить их относительно контурных токов и затем по уравнениям, |
|связывающим контурные токи и токи ветвей, найти последние. |
|Однако данная система уравнений может быть составлена формальным путем: |
|[pic] |
|При составлении уравнений необходимо помнить следующее: |
|[pic] - сумма сопротивлений, входящих в i-й контур; |
|[pic] - сумма сопротивлений, общих для i-го и k-го контуров, причем [pic]; |
|члены на главной диагонали всегда пишутся со знаком “+”; |
|знак “+” перед остальными членами ставится в случае, если через общее сопротивление |
|[pic] i-й и k- й контурные токи проходят в одном направлении, в противном случае |
|ставится знак “-”; |
|если i-й и k- й контуры не имеют общих сопротивлений, то [pic]; |
|в правой части уравнений записывается алгебраическая сумма ЭДС, входящих в контур: со|
|знаком “+”, если направление ЭДС совпадает с выбранным направлением контурного тока, |
|и “-”, если не совпадает. |
|В нашем случае, для первого уравнения системы, имеем: |
|[pic] |
|Следует обратить внимание на то, что, поскольку [pic], коэффициенты контурных |
|уравнений всегда симметричны относительно главной диагонали. |
|Если в цепи содержатся помимо источников ЭДС источники тока, то они учитываются в |
|левых частях уравнений как известные контурные токи: k- й контурный ток, проходящий |
|через ветвь с k- м источником тока равен этому току [pic]. |
| |
|Метод узловых потенциалов |
|Данный метод вытекает из первого закона Кирхгофа. В качестве неизвестных принимаются |
|потенциалы узлов, по найденным значениям которых с помощью закона Ома для участка |
|цепи с источником ЭДС затем находят токи в ветвях. Поскольку потенциал – величина |
|относительная, потенциал одного из узлов (любого) принимается равным нулю. Таким |
|образом, число неизвестных потенциалов, а следовательно, и число уравнений равно |
|[pic], т.е. числу ветвей дерева [pic]. |
|Пусть имеем схему по рис. 4, в которой примем [pic]. |
|Допустим, что [pic] и [pic] известны. Тогда значения токов на основании закона Ома |
|для участка цепи с источником ЭДС |
|[pic] |
|Запишем уравнение по первому закону Кирхгофа для узла а: |
|[pic] |
|и подставим значения входящих в него токов, определенных выше: |
|[pic]. |
|Сгруппировав соответствующие члены, получим: |
|[pic]. |
|Аналогично можно записать для узла b: |
|[pic]. |
|Как и по методу контурных токов, система уравнений по методу узловых потенциалов |
|может быть составлена формальным путем. При этом необходимо руководствоваться |
|следующими правилами: |
|1. В левой части i-го уравнения записывается со знаком “+”потенциал [pic] i-го |
|узла, для которого составляется данное i-е уравнение, умноженный на сумму |
|проводимостей [pic] ветвей, присоединенных к данному i-му узлу, и со знаком |
|“-”потенциал [pic] соседних узлов, каждый из которых умножен на сумму проводимостей |
|[pic] ветвей, присоединенных к i-му и k-му узлам. |
|Из сказанного следует, что все члены [pic], стоящие на главной диагонали в левой |
|части системы уравнений, записываются со знаком “+”, а все остальные – со знаком “-”,|
|причем [pic]. Последнее равенство по аналогии с методом контурных токов обеспечивает |
|симметрию коэффициентов уравнений относительно главной диагонали. |
|2. В правой части i-го уравнения записывается так называемый узловой ток [pic], |
|равный сумме произведений ЭДС ветвей, подходящих к i-му узлу, и проводимостей этих |
|ветвей. При этом член суммы записывается со знаком “+”, если соответствующая ЭДС |
|направлена к i-му узлу, в противном случае ставится знак “-”. Если в подходящих к |
|i-му узлу ветвях содержатся источники тока, то знаки токов источников токов, входящих|
|в узловой ток простыми слагаемыми, определяются аналогично. |
|В заключение отметим, что выбор того или иного из рассмотренных методов определяется |
|тем, что следует найти, а также тем, какой из них обеспечивает меньший порядок |
|системы уравнений. При расчете токов при одинаковом числе уравнений предпочтительнее |
|использовать метод контурных токов, так как он не требует дополнительных вычислений с|
|использованием закона Ома. Метод узловых потенциалов очень удобен при расчетах |
|многофазных цепей, но не удобен при расчете цепей со взаимной индуктивностью. |
| |
|Литература |
| |
|1. Основы теории цепей: Учеб.для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, |
|С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с. |
|2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. |
|для студентов электротехнических, энергетических и приборостроительных специальностей|
|вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с |
|. |
|Контрольные вопросы и задачи |
| |
|1. В ветви на рис. 1 [pic] [pic] [pic]. Определить ток [pic]. |
|Ответ: [pic]. |
|2. В чем заключается сущность символического метода расчета цепей |
|синусоидального тока? |
|3. В чем состоит сущность метода контурных токов? |
|4. В чем состоит сущность метода узловых потенциалов? |
|5. В цепи на рис. 5 [pic]; [pic]; [pic]; [pic] [pic] [pic] [pic]. Методом |
|контурных токов определить комплексы действующих значений токов ветвей. |
|Ответ: [pic]; [pic]; [pic]. |
|6. В цепи на рис. 6 [pic] [pic][pic] [pic] [pic] [pic] [pic] [pic] [pic] |
|[pic]. Рассчитать токи в ветвях, используя метод узловых потенциалов. |
|Ответ: [pic]; [pic]; [pic]; [pic]; [pic]; [pic]; [pic]. |
|[pic] |


Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.