рефераты скачать

МЕНЮ


Лекции по физике за 2 семестр

 


Вот вопрос: имеем катушку, что будет, если концы этой катушки всунуть в розетку? Меня этот вопрос интересовал с детства вот  в связи с чем: это было давно и там всякие были проекты космических полётов, в качестве одного из проектов был такой: сделать длинный соленоид (такая магнитная пушка) в нём снаряд (металлический космический корабль), и в таком магнитном поле в длинной трубе он должен был бы разгоняться, выстреливаться и лететь. Была у меня такая книжка, там был этот один из проектов, ну, и я решил посмотреть. Взял соорудил картонную трубку, намотал на неё проволоку, посадил туда железную штучку и сунул в розетку посмотреть, будет ли оно лететь. Эффект был, конечно, впечатляющий, когда это всё со страшной вспышкой горело. Но сама проблема, что будет, если обмотку катушки всунуть в розетку, меня с тех пор занимает. Вот вопрос: что будет, если взять обмотанную катушку и сунуть в розетку? Ответ такой: если намотано там достаточно много витков, тогда сопротивление этой намотки будет равно нулю, будет течь переменный ток такой, что э.д.с. самоиндукции в каждый момент времени будет уравновешивать напряжение на клеммах розетки, чем больше индуктивность катушки, тем меньше будет ток, и ничего пикантного не произойдёт, при постоянном токе она сгорит, для постоянного тока такая катушка будет коротким замыканием. Переменный ток – катушку со сколь угодно малым сопротивлением, если у неё достаточно большая индуктивность, можно втыкать, и ничего страшного не произойдёт.


 

 

 

 

Энергия магнитного поля



Мы уже задавались подобным вопросом для электрического поля и обнаружили, что дарового электрического поля создать нельзя, для этого требуются энергетические, а, следовательно, и финансовые затраты. С магнитным полем точно также: создать даром магнитное поле нельзя. Для того, чтобы создать магнитное поле, необходимо совершить определённую работу, мы сейчас её вычислим.

При нарастании тока в цепи возникает э.д.с., равная . Эта э.д.с. направлена «против шерсти» (против тока). Для поддержания этого тока требуется мощность . Значит, работа, которую надо совершить за время dt равна: . Мораль: для того, чтобы сила тока увеличилась на dÁ, надо совершить работу dA такую (она определяется уже наличным током к моменту времени t). Полная работа это будет интеграл: . Для того, чтобы создать силу тока Á, необходима работа , где L – коэффициент самоиндукции.

А теперь спрашивается, куда эта работа девается? Ответ: запасается в виде энергии магнитного поля. Наглядно: имеем генератор с ручкой, мы крутим эту ручку. Работа, которую мы совершаем, крутя эту ручку, переходит в энергию магнитного поля и размазывается по всему пространству.

Пусти магнитное поле локализовано в длинном соленоиде, тогда работа равняется: , но , а , и мы получаем: . Эта работа равняется энергии магнитного поля: , величина  имеет смысл плотности энергии. В элементе объёма содержится энергия , а в объёме V - .

Магнитное поле обладает энергией, и плотность энергии , можно ли её высвободить? Да, конечно, если магнитное поле исчезает, то эта энергия выделяется в той или иной форме.


Создание тока в цепи с индуктивностью


Это создание тока в любой цепи, потому что любая цепь обладает индуктивностью. Имеем такую систему: батарейка, ключ, R – сопротивление цепи, L – индуктивность цепи (не обязательно, чтобы была катушка, потому что, повторяю, любая цепь обладает индуктивностью, но мы нарисуем её). У нас есть правило для замкнутого контура: . В данном случае, если ток в цепи меняется, то у нас присутствует э.д.с. батарейки, сосредоточенные там сторонние силы, а кроме того, за счёт самоиндукции развивается э.д.с. Пишем:  ( - это э.д.с. самоиндукции), мы получаем такое уравнение: , или , или . Такое дифференциальное уравнение, линейное, первой степени, неоднородное, решается: . Определим А из начальных условий: , это означает, что . Мы тогда получаем окончательно: . При  получаем  – разумное решение, а начальная стадия – экспоненциальное нарастание:


Почему, спрашивается, когда вы включаете свет, то он вспыхивает мгновенно? Ответ такой: просто мала индуктивность. Если, например, последовательно с лампочкой поставить хорошую катушку и пустить переменный ток, то лампа вообще гореть не будет, если же подсоединить к аккумулятору, то лампочка будет медленно загораться, а зато, когда вы её выключать будете, там тоже интересная вещь произойдёт: выключение магнитного поля – это выделение энергии, гром, молния и т.д.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11



Мы закончили обсуждение квазистационарных процессов. Теперь движемся дальше, и последняя тема у нас в электричестве – нестационарные поля.



Нестационарные поля



Ток смещения

Нестационарные поля описываются полным набором уравнений Максвелла без всяких изъятий:


                                           

                                      

                                                     

                               


То, что мы до сих пор рассматривали, это четыре уравнения. Но в четвёртом было изъято слагаемое . Начнём выяснение роли этого слагаемого.

Кстати, весь набор называется «уравнения Максвелла», почему? Первое уравнение – это фактически закон Кулона; второе – закон электромагнитной индукции, который открыл Фарадей; третье – выражает тот факт, что линии магнитной индукции замкнуты, тут трудно даже указать авторство; вот, если выкинуть это слагаемое , то четвёртое уравнение  – это закон Био-Савара. Что сделал Максвелл? Одну вещь: он добавил в одно уравнение это слагаемое, и весь набор получил название «уравнения Максвелла».

А теперь, вот, я не могу сказать, так ли Максвелл рассуждал, но можно привести пример, на котором это уравнение сломалось бы. Вот такой пример. Рассмотрим сферически симметричное распределение заряда, и пусть заряд растекается таким образом: скажем, имеем заряженный шар и заряд растекается из этого шара по радиальным лучам.1) А теперь спрашивается: какое магнитное поле создаёт вот такой сферически симметричный ток? Ну, поскольку у нас источник сферически симметричный, то магнитное поле должно также быть сферически симметричным. Что это означает? Картина поля должна быть такая, что, если это поле повернуть вокруг любой оси, проходящей через центр симметрии, оно должно переходить в себя. Прекрасно. Но из уравнения 3. следует, что силовые линии магнитного поля замкнуты, мы это уже обсуждали, и создать конфигурацию таких замкнутых линий, чтобы она обладала сферической симметрией, нельзя. Осевую симметрию можно, то есть, чтобы поле переходило в себя при поворотах вокруг некоторой оси, а чтобы оно переходило в себя при поворотах вокруг любой оси… Если напрячь воображение, ясно, что из замкнутых линий сферически симметричного магнитного поля создать нельзя. Из уравнения 3. следует, что для вот такого сферически симметричного тока , то есть магнитное поле не создаётся, то есть магнитное поле не создаётся.


Возьмём такой контур , контур, площадь которого перпендикулярна линиям тока. Применим вот к этому контуру уравнение 4*. – циркуляция по этому контуру не равна нулю. Почему? Потому что уравнение говорит, что циркуляция равна плотности тока, умноженной на эту площадку. Через эту площадку ток течёт, а, раз ток течёт, то циркуляция по этому контуру равна силе тока через эту площадку, во всяком случае, не ноль. Значит, получается, из третьего уравнения следует, что , а из уравнения 4*. следует, что . Оказалось, что два уравнения конкурируют применительно к этой ситуации. Какой вывод, и что, вообще говоря, верно, создаёт такая конфигурация магнитное поле или не создаёт? Соображения симметрии – это более мощные соображения, значит, верно, что , то есть выигрывает третье уравнение. Это означает, что четвёртое уравнение со звёздочкой не верно. Но, если добавить это слагаемое , тогда нет противоречий между этими двумя уравнениями.


Ещё одно соображение, повторяю, я не знаю, Максвеллу приходило это в голову или нет, но могло приходить в голову и, наверно, приходило. Для электромагнитного поля в пустоте уравнение 2. даёт:  . Вот, когда пишется частная производная, имеется в виду, что контур фиксирован в пространстве, контур не движется. Смысл его такой, что, если меняется со временем (не то, что контур переехал куда-нибудь), то возникает электрическое поле. Уравнение 4*. даёт для пустого пространства , потому что  в пустоте нет. Нарушается симметрия, то есть, вообще говоря, здесь было бы неплохо, если бы циркуляция  по равнялась бы потоку от производной . Какая физика стоит за этим уравнением? Переменное магнитное поле создаёт электрическое поле, а переменное электрическое поле – ничего не создаёт. Вот, соображения симметрии в нынешней физике очень популярны, ну, потому что это ключ ко многим проблемам, нарушение симметрии раздражает и нуждается в объяснении. На самом деле, если мы возьмём полное уравнение 4., то настоящее уравнение в пустоте даст следующее: . Уравнение 2. Фарадей открыл экспериментально, а это – симметричное явление электромагнитной индукции – это Максвелл высосал из пальца. Никаких экспериментальных данных для этого не было, потому что, на самом деле, этот эффект очень трудно наблюдаем (константа очень мала), и практически создать переменное электрическое поле и обнаружить возникновение магнитного поля в те времена было невозможно. Можно было сыграть на очень больших производных, короче говоря, просто двигая электрическим зарядом, заметное магнитное поле не создастся, скажем, если вы этот заряд дёргаете с частотой миллион колебаний в секунду, можно мыло бы заметить магнитное поле. Если двигать заряд, согласно уравнению 4., создастся магнитное поле, но настолько маленькое при умеренных частотах, что практически его обнаружить нельзя. Максвелл написал его по аналогии, следствием оказалось существование электромагнитных волн, о которых до Максвелла никто и не помышлял. И когда примерно через двадцать лет электромагнитные волны были обнаружены, вот тогда эта Максвелловская теория и вот это уравнение 4. были признаны, наконец, и все эти построения из гипотезы превратились в теорию.



Величина  (это величина, по размерности равная плотности тока) называется током смещения. Название принадлежит Максвеллу, название осталось, а аргументация пропала: ничего там не смещается, и название «ток смещения» не должно вызывать в вас никаких ассоциаций с тем, что там что-то смещается, это термин, который остался по историческим причинам.


Мораль такая: переменное электрическое поле само по себе создаёт магнитное поле. И всё замыкается! Переменное магнитное поле является источником электрического, переменное электрическое поле является источником магнитного, и уравнения в вакууме приобретают симметричный вид (отличие только в знаке перед производной, но это не столь страшное нарушение симметрии).



Введение этого тока смещения в первом примере спасает дело: на этой картине  и . Короче говоря, циркуляция  по любому контуру – ноль. Таким образом, четвёртое уравнение для этого сферически симметрично растекающегося тока даёт, что магнитное поле равно нулю. Эта Максвелловская поправка навела порядок, и  теория стала непротиворечивой.






Закон сохранения энергии для электромагнитного поля


Я напишу уравнения Максвелла в дифференциальной форме:


                                            

                                         

                                                  

                          


Теперь делаем следующее: уравнение 2) я скалярно умножу на , уравнение 4) я скалярно умножу на :

Теперь из второго уравнения вычтем первое:


Для однородного диэлектрика . Это были наводящие соображения, на самом деле, в общем случае , точно также . Тогда уравнение приобретает такой вид:  или


.


Есть теорема Гаусса, которая сводит интеграл по объёму от дивергенции к поверхностному интегралу1). Имеет место тождество , буква у меня S у меня уже занята, поэтому я пишу σ. Тогда выбираем в пространстве некоторый объём V, σ – ограничивающая его поверхность, и мы получаем такую вещь: . В пустоте тока нет, и мы получаем уравнение             (9.1).



Напомню закон сохранения заряда: . Смысл какой? Если заряд убывает, то за счёт того, что он вытекает через поверхность, ограничивающую объём.

Теперь смотрим на формулу (9.1): скорость изменения w в объёме выражается через изменение вектора  через эту поверхность. Структура одинаковая, вопрос, что такое w и что такое ? Что такое w, мы уже знаем:  это плотность энергии электромагнитного поля, плотность энергии электромагнитного поля в единице объёма. Тогда интеграл – это полная энергия электромагнитного поля в объёме.  это энергия, протекающая через единицу площади за единицу времени, а  это плотность потока энергии (вектор Пойнтинга), по размерности []=Вт, а []=.


 - это работа электромагнитного поля в единице объёма. Эта работа может проявляться в виде тепла или в виде работы, если там стоит мотор, например.


А теперь применение этой теоремы. Такая цепь (см. рис.9.2.), кружочком обозначен мотор. Ключ замыкается, мотор вертится, и я желаю применить эту теорему. Возьму замкнутую поверхность σ, тогда мы получим . Интеграл – это мощность электродвигателя или работа в единицу времени, . Мотор совершает работу за счёт энергии, которая втекает в объём. Это я к чему говорю? Мотор совершает работу за счёт того, что через замкнутую поверхность, которой его можно охватить, из вакуума течёт энергия поля, которая представляется вектором Пойнтинга. Это означает, что для того, чтобы электромотор работал. В окрестности должны присутствовать два поля, так как .


Энергия передаётся через пустое пространство и втекает внутрь этого объёма. Спрашивается тогда, чего же электрика валяют дурака и тянут провода от источника к потребителю? Ответ очевиден: провода нужны для того, чтобы создать такие поля  и  соответствующей конфигурации. Тогда вопрос другой, а нельзя ли создать такие поля, чтобы энергия передавалась через пустоту без проводников? Можно, но это в следующий раз. Так, всё, конец.






12



В прошлый раз мы рассмотрели вектор Пойтинга. Напомню, энергия электромагнитного поля передаётся через пустое пространство, не по проводам. В общем виде ситуация тут такая: имеется некоторая область, в эту область загоняется какая-то энергия (скажем, из этой области торчит вал с ручкой и тут человек этот вал крутит) и дальше эта энергия через пустое пространство втекает в другую область, там, например, находится некоторое устройство, которое перерабатывает втекающую сюда энергию и на выходе выдаёт снова какую-то работу (скажем, здесь стоит генератор или электромотор).




Электромагнитные волны



Я уже говорил, что Максвелл усовершенствовал уравнения (добавил туда ток смещения), и получилась, наконец, замкнутая теория, и венцом постижения этой теории было предсказание существования электромагнитных волн. Надо понимать, что никто этих волн до Максвелла не видел, никто даже не подозревал, что такие вещи могут быть. Но, как только были получены эти уравнения, из них математически следовало, что должны существовать электромагнитные волны, и лет через двадцать после того, как это предсказание было сделано, они стали наблюдаемы, и тогда был триумф теории.

Уравнения Максвелла допускает существование вещи, которая называется электромагнитной волной. Но в природе оказывается так – то, что возможно в рамках правильной теории, то и на самом деле существует.

Сейчас мы должны будем усмотреть вслед за Максвеллом, что должны быть эти волны, то есть совершить такое математическое открытие, чтобы, глядя на уравнения Максвелла, сказать: «А, ну, конечно, должны быть волны».



Уравнения Максвелла в пустоте

Чем замечательна пустота? В пустоте нет зарядов , . Уравнения приобретают вид:


                                      

                                         

                                                  

                                

Ну, и сразу бросается в глаза замечательная симметрия, симметрия нарушается только тем, что в уравнении 4) константа размерная и знак. Размерная константа – несущественно, это связано с системой единиц, можно выбрать такую систему единиц, где эта константа просто единицей будет. Это дифференциальные уравнения, но положение осложняется тем, что переменные перекрещиваются. Поставим для начала скромную задачу – написать уравнение, которое содержало бы только одну неизвестную величину,  например.

Значит, первая наша цель – исключить из уравнения 2) . Как исключит? А очень просто: мы видим, что в четвёртом уравнении сидит переменная , если мы на это уравнение подействуем векторно оператором , то в правой части выскочит …

Второе уравнение даёт: . Добавляя четвёртое уравнение мы получаем:  или1)


.


Мы получили уравнение, которое утверждает, что вторая производная по времени от  связана со вторыми производными от компонент  по координатам, то есть изменение величины  в данной точке со временем увязано с пространственным изменением этой величины.



Волновое уравнение и его решение


Вот чисто математическая проблема:

уравнение вида , где  – функция координат и времени,  и  константы, называется волновым уравнением.

Не будем решать уравнение в частных производных, а я сейчас предъявлю одно важное частное решение, и будет доказано, что оно действительно является решением.

Утверждение. Функция вида  удовлетворяет волновому уравнению (частное решение).

Частное решение, вообще-то, угадывается и проверяется методом тыка. Вот, мы сейчас подставим это решение в уравнение и проверим. Что уравнение утверждает? Что вторая производная по времени от этой функции совпадёт с пространственными производными.

Пишем: , .

Вот чем замечательна комплексная экспонента: можно было бы записать действительные синусы и косинусы, но дифференцировать экспоненты гораздо приятнее, чем синусы и косинусы.

Дальше: .

, значит, . Опять замечательная вещь: оператор  действует на функцию , эта функция просто умножается на , тогда немедленно находим повторное действие оператора1): .

Подставим в исходное уравнение: , отсюда получаем .

Мораль такая: функция вида  удовлетворяет нашему уравнению, но только при таком условии:


.


Это факт математический. Нам остаётся сообразить теперь, что эта функция изображает.

Если перейти в действительную область, то есть взять сужение этого множества функций на класс действительных функций, это будет решение такого типа: . Чтобы не мучиться с тремя переменными, можно это дело упростить: пусть , тогда . Заметим, что это никакое не ограничение общности, ось х мы всегда можем выбрать вдоль вектора . Мы получили функцию от двух переменных: . А теперь будем смотреть, что эта функция представляет.


Делаем мгновенную фотографию: фиксируем момент времени  и смотрим пространственную конфигурацию.


Период синуса 2π, ясно, когда х меняется на λдлину волны (пространственный период), то синус должен измениться на 2π, мы имеем такое соотношение: . Мы проинтерпретировали константу kволновое число, а вектор – волновой вектор. Эта мгновенная фотография показывает, как функция зависит от пространства.



Теперь будем следить за временным изменением, то есть сидим в точке х и смотрим, что делается с функцией  со временем. Фиксируем , тогда , значит, в фиксированной точке опять синусоидальная функция времени. Мы имеем, поскольку период синуса 2π, , то есть мы проинтерпретировали константу ,  называется частотой.


И остаётся, наконец, последнее: запустить обе переменные λ и t, что тогда эта функция будет изображать? Тоже легко понять.

Если , то , а  означает в свою очередь, что . Для событий, для которых координата – линейная функция времени , функция всё время одна и та же. Это можно проинтерпретировать так: если мы будем бежать вдоль оси х со скоростью , то мы будем всё время видеть перед собой одно и тоже значение этой функции.


Функция, которую мы получили – это синусоидальная волна, бегущая вправо вдоль оси х.


Если мы запустим х и t одновременно, то окажется, что эта синусоида бежит вдоль оси со скоростью , вот такое решение мы получили, ну и тогда понятно, почему это называется волной.


Вот то, что я говорил, что, если мы будем бежать с такой скоростью, мы будем видеть одно и то же значение функции, наглядно:

волны на воде. Для волны на воде – это отклонение волны от горизонтального уровня. Когда вы будете бежать вдоль этой волны со скоростью её распространения, то вы всё время будете видеть перед собой одну и ту же высоту над поверхностью воды.


Другой пример – звуковая волна.


Имеем синусоидальную звуковую волну. Как её создать? Источник колеблется с одной частотой (такой гул на одной частоте мы редко воспринимаем, он, кстати, очень раздражает). Если идёт такая волна определённой тональности, то, когда вы стоите, у вас в ухе давление со временем меняется и создаёт силу, которая давит на перепонку в ухе, колебания перепонки передаются в мозги, с помощью там разных передаточных устройств, и мы будем слышать звук. А что будет, если вы будете бежать вдоль волны со скоростью её распространения? Будет постоянное давление на перепонку и всё, не будет никакого звука. Правда, пример гипотетический, потому что, если в воздухе бежать со скоростью звука, то у вас будет так свистеть в ушах, что вам не будет не до восприятия этой струны.


Волна бежит со скоростью , но у нас такое соотношение: . Мы видим, что скорость – это та константа, которая стоит в уравнении.


Решением волнового уравнения является синусоидальная волна, бегущая со скоростью с.


А теперь вернёмся к уравнениям Максвелла. Мы там получили, что . Для магнитного поля аналогично. Такая функция  удовлетворяет этому уравнению. При условии, что . Значит, должны быть электромагнитные волны, распространяющиеся с такой скоростью . И вот тут уже круг замкнулся. Максвелл получил волновое уравнение и определил скорость волны, а к тому времени было известно экспериментальное значение скорости света, и обнаружилось, что эти скорости равны.






 








[1] Компьютер так бы и считал: разбивал с заданной точностью кривую на элементы и суммировал. Как завести в компьютер векторное поле? Таблицей: пространство разбиваем на ячейки и заносим значение вектора в каждой ячейке, кривая так же заносится в виде таблицы. В анализе есть способы, как брать такие интегралы, но нас это сейчас не волнует, нам нужно понять смысл.

1) Здесь я ввёл новый математический символ  – частная производная, но чтоб не было недоразумений: . Удобнее писать  вместо , потому что оно прямо содержит в себе указание на то, что нужно делать.

Между прочим,  вот, в порядке упражнения полезно было бы для вас вычислить , и убедиться, что вы получите предыдущую формулу для напряжённости поля. Это, вот, для самопроверки (не в физике, а в математической квалификации), если вы её получите – это признак того, что вы владеете соответствующим в математике, если нет, –тогда пойдите к своему преподавателю мат. анализа, и пусть он вас там или научит, или накажет.

1) Поле, создаваемое заданным распределением заряда.

2) Любое распределение заряда, рассматриваемое из бесконечности, ну, или издалека, оно всегда ведёт себя как точечный заряд.

3) Интегрирование ведётся по , когда по  интегрирование будет проведено, то эта переменная вылетает вообще, мы получаем число, это  сидит здесь как параметр, то есть значение интеграла зависит от , от положения точки, в которой ищется потенциал.

1) Очевидная вещь, что, если мы отойдём достаточно далеко от этого распределения, то какое станет поле? Как от точечного заряда. Значит, на большом расстоянии можно ответ писать сразу: потенциал как от точечного заряда.

2) Это пока точная формула, тут стоит малая величина и квадрат малой величины, вот, если б мы выкинули их, мы получили бы поле точечного заряда, мы же выкинем квадрат малой величины и сделаем формулу более аккуратной.

3) Интегрирование ведётся по штрихованной переменной, по координатам элемента объёма, относительно этого интегрирования .

1) - постоянный вектор, характеризующий распределение заряда, постоянная величина.

2) Есть общий рецепт: .

1) То есть мы можем охватить этот заряд замкнутой поверхностью такой, что вне этой поверхности заряда нет.

2) А если кто не знает, тогда пусть себя высечет, потому что должен знать.

1) А дальше мы будем считать, что вектор  достаточно мал, и эту скалярную функцию мы можем разложить

2) Функцию плотности я переведу в функцию, зависящую от ,  задаёт точку однозначно.

1) Там и по другим параметрам может быть разбиение, но здесь на проводники и диэлектрики.

1) Скалярное произведение это есть . Значит,  обозначается  и называется оператор Лапласа.

2) Есть целый раздел мат. физики, специально посвящённый решению этого уравнения, и мы обсуждать это не будем.

1) Слово «ёмкость», в общем-то, неудачное, потому что оно наводит на ассоциации бытовые, вроде ёмкость ведра или ёмкость чашки, на самом деле, никакого такого смысла нет. Это я вас просто предупреждаю, потому что часто бывают недоразумения; возникает такое ощущение, что ёмкость проводника связана с зарядом, который можно посадить на этот проводник; на любой проводник можно посадить любой заряд, будет просто различный потенциал при этом, ёмкость будет коэффициентом пропорциональности между потенциалом и зарядом и всё.


1) Вы должны уметь находить ёмкость сферического и цилиндрического конденсаторов.

1) Мы учитываем, что интегрируется по  и для всех  другие величины – константы.

1) Интеграл по АD=интегралу по ВС=0, так как , интеграл по CD=0, потому что там  по предположению. А на отрезке АВ векторы  и  параллельны.

1) направление нормали задаётся правилом правого винта (обход и нормаль должны образовывать правый винт).

1) Это даже можно сделать. Известно, есть радиактивный распад (когда из ядра вылетают заряженные α-частицы), возьмём шар вот такого радиактивного вещества, из которого вылетают по радиусу α-частицы (это положительно заряженные ядра гелия), эти заряженные частицы представляют вот такой радиальный ток. То есть, эта ситуация реализуема.

1) Физические законы такие вообще, что, когда в них встречается дивергенция какого-то вектора, то у всякого физика непременно возникает желание интегрировать по объёму эту дивергенцию.

1) Имеет место такое математическое тождество . Из первого уравнения , поэтому .

1) Воспользуемся формулой  и учтём, что .


Страницы: 1, 2, 3, 4, 5, 6


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.