рефераты скачать

МЕНЮ


Лазерная технология

На параметры отверстий существенно влияют энергетические характеристики импульса, временные параметры излучения, а также условия фокусировки излучения. Остановимся на роли каждого фактора.

Влияние энергетических характеристик. Многие технологические лазерные установки имеют одну неизменную длительность импульса или их ограниченный набор. В таком случае для получения заданных размеров отверстия подбирают энергию импульса. Тогда зависимость глубины и диаметра отверстия от энергии импульса излучения - одна из основных характеристик, определяющих возможности получения отверстий с помощью лазера.

Изменить энергию лазерного импульса можно несколькими методами: изменением электрической энергии накачки импульсных ламп (наиболее распространенный способ); применением светофильтров; диафрагмированием луча.

При одинаковых значениях энергии в импульсе диаметры отверстий, полученных, например, в стальных пластинах, будут различными в зависимости от метода получения энергии импульса — диафрагмированием или изменением энергии накачки. При энергии импульса лазерного излучения в несколько джоулей диаметры отверстий могут отличаться в 2—2,5 раза. Это обусловлено тем, что уменьшение диаметра отверстия при диафрагмировании луча связано с уменьшением его расходимости, а при изменении энергии с помощью увеличения (или уменьшения) энергии накачки импульсных ламп меняется не только расходимость луча, но и длительность импульса излучения. Если диаметр отверстия сильно зависит от диафрагмирования лазерного луча, то глубина отверстия — весьма слабо.

Влияние временных характеристик. Специально проведенные опыты показали существенную зависимость размеров отверстия от длительности импульса при постоянной его энергии. Увеличение длительности импульса приводит к росту глубины отверстия, одновременно уменьшая его диаметр. Это объясняется тем, что увеличение длительности импульса снижает удельную мощность излучения (напомним, что энергия импульса считается постоянной), а отсюда — уменьшение экранирующего влияния продуктов разрушения. Однако плотность потока излучения не должна быть ниже некоторой величины, по достижении которой отверстие «затекает» расплавом или вообще не образуется. Влияние формы импульса на параметры отверстия рассмотрим ниже.

Влияние условий фокусировки. Более пространно это влияние на параметры отверстия величины фокусного расстояния оптической системы и смещения фокальной плоскости относительно поверхности детали.

С увеличением фокусного расстояния линзы удельная мощность излучения снижается (при прочих неизменных характеристиках энергии, длительности импульса, положения фокальной плоскости относительно поверхности детали), а значит, уменьшается отношение диаметра отверстия на входе к диаметру пятна нагрева. Диаметры входных отверстий при фокусировке луча на поверхность мишени превышают обычно в несколько раз диаметры пятен нагрева на поверхности. Это объясняется тем, что при формировании отверстия стенки его размываются в результате выброса жидкой фазы, образующейся на них.

Наибольшая глубина отверстия достигается при фокусировке лазерного излучения на некоторое расстояние в глубь материала от поверхности детали. Применение линз с меньшим фокусным расстоянием позволяет получать более глубокие отверстия с меньшим диаметром.

Факторы, влияющие на точность и воспроизводимость результатов. Области практического применения лазерной размерной обработки ограничены преимущественно получением отверстий не выше 3-го класса точности. Тем не менее, лазерная технология получения отверстий внедрена на ряде предприятий, где с ее помощью получают черновые отверстия (на проблемах внедрения этих процессов мы остановимся позднее).

Относительно невысокие точность и качество лазерной размерной обработки в ее одноимпульсном варианте обусловлены большим объемом расплава в продуктах разрушения и его малоуправляемым перераспределением при движении по стенкам отверстия в конце действия импульса излучения лазера и после окончания его действия, пока не произойдет затвердевание.

Для хрупких материалов возрастание длительности импульса приводит к росту зоны термических напряжений и к образованию трещин. В то же время уменьшение продолжительности действия импульса значительно уменьшает вероятность появления трещин для таких материалов, как ферриты; длительность импульса, при которой трещин не появляется, как показывают опытные данные, не превышает 0,1 мс. С другой стороны, коротким импульсом излучения невозможно получить глубокое отверстие.

На точность и воспроизводимость параметров отверстий влияет ряд факторов, которые можно разбить на три основные группы.

Факторы первой группы, которые оказывают наибольшее влияние на воспроизводимость размеров и форм отверстий, связаны с нестабильностью таких параметров излучения, как энергия, длительность импульса, угол расходимости, пространственная и временная структура излучения.

Факторы второй группы обусловлены различными неточностями установки деталей и их перемещения в зоне воздействия излучения. Например, несовпадение нормали к поверхности детали с оптической осью фокусирующей системы при перемещении детали может при получении серии отверстий повлиять на диаметр и форму отверстия вследствие расфокусировки.

Факторы третьей группы связаны с неоднородностью структуры вещества, свойств и состояния обрабатываемой поверхности деталей, что также влияет на воспроизводимость результатов в партии однотипных изделий.

Влияние указанных факторов может быть существенным в тех случаях, когда диаметры отверстий соизмеримы с размерами неоднородностей или когда их число велико (пористые материалы, полученные методами порошковой металлургии).

Методы повышения точности и воспроизводимости результатов. Их можно условно разбить на две группы: методы, связанные с выбором режима обработки, управления импульсом (длительность и форма импульса), способа обработки (многоимпульсная обработка, обработка в цилиндрической световой трубке) и т. д.; методы, применяющие различные способы калибровки полученных отверстий, химическое травление, продувку отверстий сжатым газом и т.д.

Один из наиболее эффективных методов повышения точности и воспроизводимости результатов получения отверстий с помощью луча лазера — использование многоимпульсной обработки (МИО). Сущность ее в том, что отверстие формируется не одним импульсом, а серией одинаковых импульсов с определенной энергией и длительностью, действие которых доводит размеры отверстия до необходимого. Этот процесс в определенной степени аналогичен процессам электроэрозионной обработки.

Толщина снимаемого каждым импульсом слоя может быть весьма малой. Поэтому при получении отверстий глубиной в 1 мм и более наличие жидкой фазы в меньшей степени сказывается на искажении формы отверстия, чем при действии одного импульса.

Особенностью МИО является то, что характерный размер зоны термического влияния определяется длительностью отдельного короткого импульса, поскольку период следования импульсов значительно больше времени остывания материала. Поэтому с помощью МИО можно получать отверстия в хрупких материалах без их раскалывания.

Способ используется для решения двух различных технологических задач: получения максимально глубоких отверстий без жестких требований к их точности (не выше 3-го класса) и форме; получения прецизионных отверстий (не ниже 2-го класса).

Число импульсов в серии при МИО обычно близко к 10. Дело в том, что эффективность удаления вещества с ростом числа импульсов падает. При обработке без ЦСТ это связано с уменьшением плотности потока излучения при углублении отверстия. Опыты и расчеты показывают, что при использовании МИО можно увеличить глубину отверстия по сравнению с обработкой одним импульсом в несколько раз. Углубить отверстие при МИО можно, смещая в процессе обработки фокус линзы в глубь образца: удается получать отверстия с отношением глубины к диаметру равным 25 и более.

Лазерное разделение материалов. Процессы разделения материалов можно считать одной из наиболее перспективных областей для применения лазеров большой мощности с непрерывной генерацией. Дело в том, что резка тонколистовых высокопрочных стальных материалов механическими способами — малоэффективный и трудоемкий процесс, особенно при мелкосерийном производстве деталей сложной конфигурации. Использование для этих же целей известных термических способов (кислородная резка, плазменная резка) неэффективно из-за крайне низкого качества кромок реза, большой зоны термического влияния и значительных термических деформаций. Не случайно за рубежом лазерная резка по числу патентов стоит на одном из первых мест среди технологических процессов.

Для резки материалов обычно используются лазеры на СО2 и на алюмоиттриевом гранате. У С02-лазеров высокий КПД (15%); кроме того, излучение на длине волны 10,6 мкм поглощается большим числом материалов, включая металлические окислы, стекла, керамику, кварц, естественные органические материалы (дерево, кожа и др.), синтетику, пластики и т. д. Процесс легко автоматизируется для получения фигурных контуров разреза.

Для термораскалывания необходимо создать в объеме материала при поглощении лазерного излучения термические напряжения и микротрещины. Затем материал разламывается по линии действия теплового источника. Метод в какой-то мере аналогичен методу резки стекол или других хрупких материалов алмазным инструментом с последующим приложением механического усилия для разлома.

Остановимся более подробно на лазерной резке. Как известно, действие излучения на поверхность разрезаемой детали приводит к образованию теплового источника. Он нагревает материал до температуры плавления и выше, что формирует зону плавления. Перемещение источника тепла вдоль предполагаемой линии разделения и удаление расплава газовой струей формирует зону лазерной резки.

Лазерная резка возможна, если плотность потока излучения, поглощаемого поверхностью вещества, превышает критическое значение для достижения температуры, несколько превышающей температуру плавления данного материала за время, в течение которого диаметр луча лазера пересечет данную точку на поверхности детали. Очевидно, что это время зависит от скорости движения теплового источника, оно тем короче, чем выше эта скорость.

При резке металлов, как, впрочем, и других мате риалов, используется схема с подачей соосно лазерному излучению потока газовой струи. Метод разделения материалов, предложенный в 1967 г., получил название газолазерной резки. Струя газа через специальное сопло подается в зону резки и выполняет несколько функций. Если режутся легко воспламеняющиеся материалы (дерево, картон, текстильные материалы, кожа), содержащие органические вещества, то применяется нейтральный газ, например аргон, который препятствует их загоранию и способствует удалению продуктов разложения из зоны реза. Еще чаще используется азот, как более дешевый.

Для металлов, напротив, подают воздух или кислород, которые инициируют химическую реакцию окисления и способствуют удалению расплава со стенок реза. Процесс газолазерной резки с применением кислорода аналогичен кислородно-ацетиленовой резке, в которой экзотермическая химическая реакция также используется как источник значительной части энергии. Сфокусированное излучение лазера заменяет кислородно-ацетиленовое пламя в качестве источника тепла для нагревания металла до температуры, при которой химическая реакция начинает протекать весьма бурно. Лазерный луч — тепловой источник с более высокой концентрацией энергии, что уменьшает ширину реза, размеры зоны термического влияния, но дает более высокую скорость резки по сравнению с любым другим способом.

Одна из важных областей применения лазерного метода разделения материалов — скрайбирование. Быстро растущие объемы производства интегральных схем (ИС) и больших интегральных схем (БИС) требуют создания оборудования высокой производительности для разделения полупроводниковых пластин на кристаллы. Следует подчеркнуть, что высокая степень автоматизации последующих операций сборки ИС и БИС ужесточает ряд качественных требований к операции разделения: точности размеров кристаллов, прямоугольности геометрической формы, отсутствия сколов на боковых гранях и т. д.

Сущность лазерного скрайбирования — в создании по линии предполагаемого разлома канавки в материале, формируемой воздействием отдельных лазерных импульсов малой длительности 10-8с и с большой плотностью потока, достигающей 109 Вт/см2. Малая длительность импульса излучения не позволяет испарить большой объем вещества. Увеличивать же плотность потока выше 109 Вт/см2 нецелесообразно из-за развития взрывных процессов на поверхности разрезаемого полупроводника и генерирования в его объем ударной волны (что приводит к образованию дефектов, снижающих качество края реза). Наложение отдельных, частично перекрывающихся лунок при перемещении луча образует скрайберный рез.

Для скрайбирования используют лазеры на алюмоиттриевом гранате, легированном неодимом. Пороговая мощность, при которой начинается испарение материала, определяется температурой плавления, коэффициентами теплопроводности и поглощения.

Лазерный скрайбер, используемый для разделения полупроводниковых пластин на отдельные кристаллы, состоит из трех основных частей: лазера с высоковольтным блоком питания, оптической системы фокусировки и визуального наблюдения за зоной обработки и системы координатных перемещений.

Частота следования отдельных импульсов достаточно велика (до 50 кГц), что позволяет получить скрайберный рез на больших скоростях. Глубина реза достигает 15—50 мкм при ширине до 25—30 мкм. При лазерном скрайбировании высокое качество разделения обеспечивается при глубине скрайбирования не менее ¼ толщины пластины, когда скорость скрайбирования становится значительно ниже максимально возможной. Определенной технологической проблемой при лазерном скрайбировании является защита пластины от конденсатов полупроводникового материала и очистка ее от них. Существует несколько вариантов решения этой проблемы: вакуумный отсос, погружение пластин в деионизованную воду, размещение над пластиной прозрачной эластичной ленты с хорошей адгезией к испаренным частицам и др.

Лазерно-плазменная обработка. Химико-термическая обработка материалов связана с инициированием поверхностной химической реакции при повышении температуры подложки, например реакции окисления.

Самостоятельный характер у лазерной обработки материалов в различных газах при повышенных и даже высоких давлениях, когда воздействие излучения сопровождается оптическим пробоем газа вблизи поверхности и образованием плазменного сгустка, взаимодействующего, с одной стороны, с лазерным излучением, а с другой — с поверхностью мишени. Обработка материалов лазерным лучом в таких условиях получила название лазерно-плазменной обработки. Она отличается от химико-термической наличием вблизи поверхности обрабатываемой мишени плазменного сгустка, роль которого в ряде процессов при изменении свойств поверхностного слоя вещества оказывается определяющей.

Обычная схема лазерно-плазменных процессов такова. Обрабатываемое изделие — пластина, стержень или другая геометрическая конфигурация — помещается в камеру, наполняемую газом (например, азотом, углекислым газом или другим) при повышенном или высоком давлении. Излучение лазера через окно в стенке камеры вводится в ее объем и с помощью оптической системы, находящейся внутри камеры, фокусируется на поверхности мишени. Мишень может перемещаться внутри камеры с помощью микродвигателей, что допускает многовариантность процесса и возможность обработки серии изделий, помещенных в обоймы кассеты. Возможны варианты лазерно-плазменной обработки и без камеры высокого давления, когда на поверхность изделия подается струя газа, который вблизи поверхности «пробивается» оптическим излучением, например излучением СО2-лазера.

Совместное действие лазерного излучения и плазменного сгустка из частиц окружающего мишень газа приводит к направленному изменению поверхностных свойств вещества мишени. Меняется газонасыщение поверхностного слоя вещества, например, при лазерно-плазменной обработке в атмосфере азота стальной пластины. Причем изменение микротвердости, в зависимости от давления азота, коррелируется с изменением газосодержания.

Интересно проследить за ролью давления окружающего обрабатываемую деталь газа при лазерно-плазменной обработке. Рассмотрим это на примере лазерно-плазменной обработки: пластины из молибдена толщиной 2 мм в атмосфере азота. Если давление газа в камере не превышает 10—20 атм., то в мишени за время продолжительности импульса 1 мс при удельной мощности 107 Вт/см2 образуется сквозное отверстие. При тех же условиях и давлении - 100 атм. поверхность мишени даже не плавится, а только обожжена. Таким образом, контролируемое изменение давления и газа дает в руки технологов дополнительный параметр, изменял который можно изменять характер воздействия лазерного излучения на вещество.

Следует подчеркнуть, что наличие газовой атмосферы приводит к качественно новым результатам. Так, с помощью лазерно-плазменной обработки можно производить локальное упрочнение участков на поверхности материалов, в том числе таких, которые не упрочняются обычной лазерной (или иной) термообработкой на воздухе.

Подбор вещества мишени, газа и давления сто позволяет синтезировать соединения, например, такие, как нитриды металлов, карбиды и другие вещества, восстанавливать окислы тугоплавких металлов (в атмосфере водорода или метана) или создавать в локальной зоне контролируемые слои окислов.

Лазерная металлургия. Производство металлов с различными физическими свойствами и различного назначения — одна из фундаментальных задач современной промышленности. Потенциальные возможности применения лазеров в металлургии связаны с высокой мощностью непрерывного излучения, локальностью воздействия и определенной универсальностью их как тепловых источников. Эффективность использования лазеров в металлургии связана, по сути дела, с теми же процессами, с которых начинались первые опыты по применению генераторов низкотемпературной плазмы: получение тугоплавких металлов при восстановлении окислов, синтез порошков и композиционных материалов.

Классическим, если можно так выразиться, возможным применением мощных непрерывных лазеров в металлургии может оказаться использование их как высоколокальных источников нагрева. Приведем некоторые примеры возможного применения.

Аналогично плазменным процессам или процессам при использовании сфокусированного солнечного излучения возможен переплав тугоплавких металлов или высокотемпературных керамик — рафинирование материалов и улучшение их эксплуатационных свойств. Преимуществами переплава с использованием излучения лазера могут быть высокие температуры при относительно небольшой мощности, гибкость в управлении плотностью потока, что в меньшей степени доступно другим методам нагрева, исключая электронный луч, а также возможность проведения процесса в широком интервале давлений окружающей среды. Правда, при высоких давлениях следует считаться с возможностью экранирования зоны воздействия образующимся плазменным облаком. Тогда обработка станет лазерно-плазменной.

Лазерное излучение как источник локального нагрева может использоваться для создания и поддержания ванны при выращивании из расплава полупроводниковых материалов. В этом случае возможны различные технические схемы решения.

В технологии полупроводниковых материалов широко используется зонная очистка, или зонная перекристаллизация, с помощью перемещения расплавленной зоны по длине слитка. Лазерное излучение может быть использовано для создания расплавленной зоны. Ряд работ в этом направлении уже выполнен. Преимуществом перед индукционным нагревом, обычно используемым для создания зоны расплава, является более узкая тепловая зона, а перед электронно-лучевым нагревом - более дешевое оборудование, а также возможность использования газовой атмосферы в процессе, что может быть важным, если необходимо сохранить в веществе легколетучие примеси. Отметим, что электронно-лучевое плавление производится в вакууме 10-5—10-6 мм рт. ст. Оптимальность процесса и его экономическая целесообразность обусловливаются в существенной степени Оптическими характеристиками веществ. В литературе, в частности, описана установка для выращивания кристаллов ниобата бария и стронция, в которой для создания зоны нагрева используется лазер на СО2.

Перспективными процессами, которые практически не рассматривались в технической литературе, могут быть, восстановительные процессы, инициируемые в лазерной плазме. В определенной зоне реактора движущегося газа (например, газа восстановителя) образуется оптический пробой, создается плазменное облако, которое поддерживается непрерывным лазерным излучением; в него вводится дисперсная фаза вещества, которое обрабатывается в лазерной плазме. Такая схема близка к струйно-плазменным процессам и сейчас используется в плазменных технологиях для восстановления окислов и синтез веществ в низкотемпературной дуговой или ВЧ-плазме. Лазерная плазма может иметь более высокую температуру, как мы уже отмечали, что в ряде случаев термодинамически выгоднее. Кроме того, процесс можно проводить при более высоких давлениях, управление им более гибко.


3.3 ЛАЗЕРЫ В АВИАЦИИ

Лазерные системы управления оружием. Использование лазеров в системах наведения ракет и бомб является, по данным зарубежной печати, одной из наиболее широко распространенных областей применения лазерных средств, наряду с лазерными дальномерами.

Страницы: 1, 2, 3, 4, 5


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.