рефераты скачать

МЕНЮ


Колебания системы " Атмосфера - Океан - Земля" и природные катаклизмы. Резонансы в Солнечной системе...

Колебания системы " Атмосфера - Океан - Земля" и природные катаклизмы. Резонансы в Солнечной системе...

ЯЛТИНСКАЯ МАЛАЯ АКАДЕМИЯ НАУК

ШКОЛЬНИКОВ «ИСКАТЕЛЬ»

 Секция физики

 

 

 

 

 

Колебания системы « Атмосфера – Океан – Земля» и природные катаклизмы. 

Резонансы в Солнечной системе, нарушающие периодичность природных катаклизмов.

 

 

 

 

 

 

 

 

 

 

 

Действительный член МАН Крыма «Искатель»

Ученик 11 класса

Форосской общеобразовательной школы IIII ступени г. Ялты

КОРАБЛЕВ Андрей

 

 

 

 

 

Научный руководитель – СЛАСТИХИН Л.П.

Учитель-методист физики

 

ВВЕДЕНИЕ.


В настоящее время в средствах массовой печати, в научно-популярной литературе, да и в солидных изданиях все катаклизмы на земле (чрезвычайные события) стали объясняться воздействием какого-то одного фактора. Многие провидцы и просто гоняющиеся за сенсациями журналисты из псевдонаучных изданий выдвигают “теории” о наступающем “конце света”.  В мире все взаимосвязано и нельзя рассматривать одно в отрыве от другого. Я покажу на примере явления Эль-Ниньо то, как влияют межгодовые колебания системы Атмосфера-Океан-Земля на протекание различных физических явлений в атмосфере, в океане, на поверхности земли .

В последние месяцы в средствах массовой информации часто упоминаются чрезвычайные события (ураганы, наводнения,  засухи, небывалые морозы и т.д.), вызванные возникшим в марте 1997 года явлением Эль-Ниньо – потеплением поверхностных вод в центральной и восточной частях Тихого океана. Давайте разберем причины участившихся чрезвычайных событий.

          Явление Эль-ниньо неразрывно связано с явлением Южного колебания (перемещениями масс воздуха над тропическими частями Индийского и  Тихого океанов в южном полушарии), поэтому оба явления изучают как единое явление Эль-Ниньо - Южное колебание (ЭНЮК), подразумевая под ним механические и термические колебания тропической атмосферы и океана периодом 2-10 лет.        Будучи геофизическим явлением планетарного масштаба, ЭНЮК, как правило, приводит к тяжелым экологическим катастрофам, социально-экологические последствия которых ощушаются во всем мире.

          Можно показать, что это явление – лишь одно из проявлений межгодовых (с периодами 2-10) совместных колебаний системы атмосфера-океан-Земля.Чтобы понять, как это происходит, рассмотрим колебания каждой из компонент в отдельности.

          В системе Атмосфера – Океан - Земля имеют место автоколебания периодами 2-10лет. Первопричиной их являются, очевидно, флуктуации атмосферной циркуляции, которые обусловлены неравномерным разогревом атмосферы радиацией Солнца. Атмосферная циркуляция является основной причиной течений в океане. Взаимодействие атмосферной циркуляции с процессами в океане порождает колебания атмосферы и океана, которые раскачивают Землю. Поскольку Земля вращается вокруг своей оси, то ее колебания происходят не в плоскости какого-то меридиана, а по кругу – в виде нутаций. Географические полюсы Земли при этом совершают круговые движения. Движения полюсов вызывают полюсной прилив, который в свою очередь влияет на колебания атмосферы и океана. В итоге в системе атмосфера – океан Земля наблюдаются нелинейные колебания с характерными для них явлениями конкуренции, синхронизации и комбинационного резонанса. Вследствие нелинейности системы и изменений в климатической системе из-за деятельности человека или внешних факторов колебания носят нерегулярный характер.

          Видимыми проявлениями совместных колебаний системы атмосфера - океан - Земля являются Южное колебание, Эль-Ниньо и Ла-Нинья и движения географических полюсов Земли. Явление ЭНЮК оказывает существенное влияние на гидрологический режим Мирового океана и аномалии погоды по всему земному шару, на жизнь биосферы. Продуктивность биосферы из – за воздействия ЭНЮК испытывает вынужденные колебания тех же периодов 2 – 10 лет. Во время Эль-Ниньо складывается крайне неблагоприятная экологическая обстановка для холоднолюбивых форм планктона, рыб, морских животных и птиц. Биологическая продуктивность Мирового океана заметно снижается. В период Ла-Нинья экологические условия становятся благоприятными и продуктивность восстанавливается. Мировой сбор зерновых и технических культур падает при Эль-Ниньо и растет при Ла-Нинья. Опасные явления погоды (сильные ливни, ураганы, морозы, засухи и т.п.) и связанные с ними стихийные бедствия (наводнения, оползни, пожары, аварии и т.п.) усугубляют негативные последствия эль-Ниньо.

Дальнейшие эмпирические и теоретические исследования, способствующие созданию моделей колебаний системы атмосфера – океан – Земля, позволят предвычислять их фазу, делать успешные прогнозы возникновения Эль-Ниньо и предупреждать тяжелые экологические и социально – экономические последствия.

Для  исследования должны подвергаться анализу все сенсационные сообщения всех различных печатных изданий, однако анализ всех предсказаний нельзя проводить, используя изменения какого – то одного фактора, скажем, смещения магнитных полюсов. О влиянии на биосферу и цивилизацию надо анализировать по изменениям в Космосе, Океане, Земле.


 

КОЛЕБАНИЯ АТМОСФЕРЫ.

 

В 20-е гг. текущего столетия при анализе аномалий атмосферного давления в субтропической зоне Южного полушария было замечено, что, когда атмосферное  давление повышено над Тихим океаном, над Индийским оно понижено, и наоборот. Это явление и было названо Южным колебанием. Позже выяснилось, что движение гигантских масс воздуха вдоль тропической зоны океанов, вызывающее чередование знака этих аномалий давления, напоминает гигантские качели.

 
 



















Рис. 1  Поле коэффициентов корреляции r между средними годовыми величинами атмосферного давления станции «Дарвин» (Австралия) и значениями давления в других пунктах Земли.


На рис. 1 показаны изолинии коэффициентов r ( увеличены в 10 раз). Для представленного случая в зоне от 300 с.ш. до 350 ю.ш. в Восточном полушарии коэффициенты корреляции положительные, а в Западном полушарии отрицательные.

Коэффициент корреляции r в рассматриваемом случае является мерой линейной статистической связи между многолетними величинами атмосферного давления в одном пункте (в нашем случае станция «Дарвин» (Австралия)) и другими пунктами земного шара. Чем ближе его величина к 1 или –1, тем теснее связь между величинами атмосферного давления в исследуемых пунктах.

Имеются своего рода два центра действия противоположного знака: австралийско – индонезийский и южнотихоокеанский. Оба расположены в тропиках Южного полушария ( отсюда и название Южное колебание).

Очаг наиболее тесной отрицательной корреляции (r < - 0,8 ) располагается вблизи станции «Таити» (170 ю.ш. , 1500 з.д.), поэтому в качестве индекса нужного колебания SOI ( South Oscillation Index) используют разность нормализованных аномалий давления на метеостанцях «Таити» и «Дарвин». При SOI £ 0 давление понижено над Тихим океаном и повышенно над Индийским океаном, при SOI ³ 0 картина обратная.

При первом взгляде на многолетние кривые индекса SOI, который фиксировался непрерывно с 1866 года, создается впечатление, что чередование его фаз носит случайный характер. Однако спектральный анализ показал наличие ярко выраженных преимущественных периодов: 6; 3,6; 2,8; 2,4 года ( рис. 2, красная кривая 1). Имеется также  небольшой пик около 12 лет. Важно, что все эти преобладающие периоды ( за исключением  периода 2,8 г.) примерно кратны периоду 1,2 г. ( номера гармоник nk = 5; 3; 2  и 10 соответственно).
























    70                     20                    10                      7                        5


Рис. 2    Спектры мощности двух самых длительных рядов индексов SOI с 1866 г. по 1996 г.       ( красная кривая) и сходных с ним индексов DT с 1851 г. по 1996 г. ( синяя кривая). По оси абсцисс приведены периоды в кварталах, по оси ординат – спектральная плотность.

КОЛЕБАНИЯ ОКЕАНА.



Явление Южного колебания тесно связано с процессами в океане. При положительных SOI ( ³ 0 ) северо – восточные и юго – восточные пассатные ветры, дующие в тропиках Тихого океана, нагоняют теплую воду в его западную часть. Там образуется толстый слой теплого перемешивания. Глубина термоклина – тонкого слоя воды, отделяющего верхний перемешанный слой от глубинных слоев океана, в котором температура очень быстро падает с глубиной, - составляет 200 – 300 м., а температура воды на поверхности достигает 27 – 300 С. Наоборот, в тропиках восточной части Тихого океана в результате сгона формируется холодный и тонкий слой перемешивания. Глубина термоклина не превышает 50 м., а температура воды колеблется от 20 – 250С в океане до 15 – 190С у побережья Южной Америки.


Когда индекс SOI уменьшается и становится отрицательным, направленный к западу градиент давления тоже уменьшается, вплоть до обращения знака, пассатные ветры ослабевают и иногда меняют направление на противоположное: появляются западные ветры. Теплая вода, накопившаяся в западной части Тихого океана, не испытывая сопротивления ветра, устремляется на восток в форме внутренней экваториальной волны, распространяющейся со скоростью 2 – 4 м/с. Когда эта волна достигает берегов Южной Америки, вода накапливается, повышается уровень моря, углубляется граница термоклина, волна движется далее, отворачивая к полюсам, и в виде отраженной волны на запад. В  результате этого область теплой воды быстро расширяется. Такие случаи потепления вод в центральной и восточной частях экваториальной зоны Тихого океана и получили название явления Эль-Ниньо.

В отличие от термина Эль-Ниньо, которым пользуются рыбаки Перу для описания локального сезонного теплого течения у берегов Перу и Эквадора, явление Эль-Ниньо охватывает всю центральную и восточную части экваториальной зоны Тихого океана и экваториальную зону Индийского океана, что придает ему глобальное значение.

Эль-Ниньо неразрывно связано с Южным колебанием. Установлено, что чем больше SOI, тем ниже температура поверхности восточной и центральной частей Тихого океана. В явлении ЭНЮК поэтому выделяют две крайние фазы: теплую фазу (Эль-Ниньо) при SOI £ 0 и холодную фазу (Ла-Нинья) при SOI ³ 0.

При Эль-Ниньо уровень моря в восточной части Тихого океана примерно на 50 см. выше, чем в западной части, при Ла-Нинья – картина обратная. Это значит, что в тропической зоне имеются межгодовые колебания уровня моря между восточной и западной частями Тихого океана амплитудой примерно 50 см. Спектр этих колебаний аналогичен спектру SOI.


Со времени пионерских работ Дж. Бьеркнеса считается, что ЭНЮК есть самоподдерживающееся колебание, в котором аномалии температуры поверхности экваториальной части Тихого океана влияют на интенсивность пассатных ветров. Последние управляются океаническими течениями, а те в свою очередь формируют аномалии температуры поверхности океана.


Обычно строятся нелинейные модели взаимодействия океана с пассатными ветрами и исследуется поведение моделей в зависимости от амплитуды сезонного цикла температуры воды и скорости течения, параметров, характеризующих силу трения атмосферы с океаном, вариаций термоклина и т.п. В частности, показано, что при изменении во времени параметров сцепления и сезонного воздействия на экваторе возникают совместные колебания аномалий температуры океана, скорости течения и глубины термоклина с периодом 3 – 4 года и их гармоники. Когда температура воды и скорости течения изменяются в течение года, предельный цикл становится странным аттрактором – зоной фазового пространства, к которой притягиваются фазовые траектории и в которой изображающая точка совершает хаотическое движение, лишенное свойства повторяемости. Наличие хаоса расширяет и размазывает главные энергетические пики в спектре и сдвигает их в сторону низких частот. Годовые вариации основного состояния не только порождают нерегулярности периода колебаний, но и приводят к синхронизации колебаний с годовым циклом, в результате чего появляются субгармоники с периодом 3,4 и 5 лет.


Таким образом, все современные модели трактуют ЭНЮК как автоколебания совместной системы океан – атмосфера, не обращая внимания на то, что в спектре присутствуют составляющие, кратные не 1 году, а 1,2 года. Период 1,2 года, названный по имени его первооткрывателя периодом Чандлера, - это период свободного движения географических полюсов Земли. Он определяется сжатием и упругими свойствами Земли, поэтому естественно было предположить, что колебания ЭНЮК есть колебания не двойной системы океан – атмосфера, а тройной: атмосфера – океан – Земля.


ДИНАМИКА ВРАЩАЮЩИХСЯ ТЕЛ.

Прежде чем перейти к рассмотрению значения колебаний Земли в механизме явления ЭНЮК рассмотрим свойства нашей планеты как вращающегося тела. Нам необходимо ввести понятия прецессии и нутации.

Рассмотрим быстро вращающийся волчок. Пусть его ось вращения отклонена от вертикали на угол Q ( см. рис 3)


 



 


















На волчок действует сила тяжести P = mg, где mмасса волчка, gускорение силы тяжести. Невращающееся тело под действием силы тяжести падает. В случае волчка падения не наблюдается. Ось его вращения непрерывно смещается, но не в направлении силы тяжести, а в перпендикулярном ей направлении, описывая конус вокруг вертикали. Это движение оси волчка называется прецессией. Чтобы понять, почему так ведет себя волчок, проанализируем его динамику.

Вектор момента импульса волчка равен H = JW, где Jмомент инерции волчка относительно его оси вращения, W - вектор угловой скорости. Сила тяжести Р создает момент силы L относительно точки опора ОL = [ R x P ], где R – радиус – вектор центра тяжести. Под действием момента силы L момент импульса волчка

                                                dH

изменяется со скоростью                = L. Поскольку вектор L направ-

                                                dt

лен перпендикулярно векторам R и Р, и вектор Н совпадает по направлению с R , то конец вектора Н и с ним ось вращения волчка смещаются в направлении, перпендикулярном направлению силы тяжести Р. При отсутствии трения вектор Н меняется только по направлению, т.е вращается, описывая конус с вершиной в точке опоры О.

Какова угловая скорость w прецессии волчка? За промежуток времени dt вектор Н получает перпендикулярное себе приращение dН = L dt, лежащее в горизонтальной плоскости. Отношение dН к проекции вектора Н на горизонтальную плоскость НsinQ дает угол dj  поворота этой проекции за время dt:

                                            L

                             dj  =                dt

                                        НsinQ

Производная dj / dt является искомой угловой скоростью прецессии:

                               

                  L           mgRsinQ         mgR

w =                 =                        =

           HsinQ          JW sinQ           JW


Итак, угловая скорость прецессии прямо пропорциональна величине момента силы тяжести и обратно пропорциональна моменту импульса волчка. Направление прецессии определяется правилом: момент силы L заставляет отрезок RsinQ вращаться около точки О в направлении к вектору L.

Более строгое рассмотрение показывает, что, помимо прецессии, ось волчка совершает быстрые колебания малой амплитуды. Эти колебания  ( дрожание оси ) называются нутацией   ( от лат. Nutatio – колебание ). Удвоенная амплитуда Q - Q0  и период t нутации волчка приближенно равны:


                               2АmgRsinQ0                                         2pA

Q - Q0   »                            ;      t  »   

                                (JW)2                                          JW



где Q и Q0  - пределы изменения угла Q в результате нутации, А – момент инерции волчка относительно оси, проходящей через точку О перпендикулярно оси вращения.

Как известно, Земля вращается вокруг своей оси со скоростью 7,29 . 10-5 рад /с. Угол наклона этой оси к плоскости земной орбиты – эклиптике – равен 660 33’ . Момент инерции Земли огромен – 8,04 . 1037 кгм2 . Фигура Земли близка к фигуре эллипсоида вращения. Когда Луна и Солнце не лежат в плоскости земного экватора, их силы притяжения  стремятся развернуть Землю так, чтобы экваториальные вздутия располагались по линии, соединяющей центр масс Земли с Луной и Солнцем. Но так же, как волчок, Земля не поворачивается в этом направлении, а под действием момента пары сил, действующих на экваториальные вздутия, прецессирует. Земная ось медленно описывает конус вокруг перпендикуляра к плоскости эклиптики (рис. 4).

 










                    

















Вершина конуса совпадает с центром Земли. Так как момент импульса Земли очень велик (59 . 1032 кг . м2 . с-1 ), скорость прецессии очень мала ( период равен примерно 26 тыс. лет). Угол наклона земной оси к эклиптике при прецессии не меняется, оставаясь равным 660 33’ , и географические координаты пунктов на Земле остаются без изменений.

Моменты сил притяжения, которые действуют на экваториальные вздутия, меняются в зависимости от изменения положения Луны и Солнца по отношению к Земле. Когда Луна и Солнце находятся в плоскости земного экватора, моменты сил исчезают, а когда склонения Луны и Солнца максимальны, достигают наибольшей величины. Вследствие таких колебаний моментов сил тяготения наблюдается нутация земной оси. Нутационное движение складывается из ряда небольших периодических колебаний. Главнейшее из них имеет период 18,6 года – период обращения лунных узлов (точек пересечения орбиты Луны с эклиптикой). Движение с этим периодом происходит по эллипсу. Большая ось эллипса перпендикулярна направлению прецессионного движения и равна 16,4” (рис. 4). Малая ось параллельна направлению прецессионного движения и равна 13,7”. Таким образом, ось вращения земли описывает на небесной сфере волнообразную траекторию, точки которой находятся на угловом расстоянии в среднем около 230 27’ от полюса эклиптики.

Помимо лунно-солнечной прецессии и нутации, ось вращения Земли изменяет свое положение также и относительно тела Земли. Это явление называется движением полюсов. Оно приводит к изменению координат пунктов на Земле.


КОЛЕБАНИЯ ЗЕМЛИ.

Происходящее в процессе ЭНЮК перераспределение воздушных и водных масс приводит к тому, что ось наибольшего момента инерции отклоняется по меридиану Австралии при Эль-Ниньо и по меридиану Таити при Ла-Нинья. Земля, являясь гироскопом, преобразует качания этой оси в движение оси наибольшего момента инерции Земли по конусу относительно оси суточного вращения. Из-за этого точки, в которых ось вращения пересекает земную поверхность – мгновенные полюсы Земли, - движутся. Они перемещаются по земной поверхности вокруг своего среднего положения в направлении вращения Земли, т.е. с запада на восток. Фигура, строение и физические свойства Земли таковы, что период свободных колебаний полюсов Земли равен 1,2 года. Помимо этого, чандлерова, движения полюсов имеется еще и вынужденное движение полюсов периодом 1 год. Сложение этих двух движений порождает биения, в результате которых радиус траектории полюса меняется от максимального до минимального с периодом примерно 6 лет ( рис. 5).

Страницы: 1, 2, 3


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.