рефераты скачать

МЕНЮ


Коцепции физики

Второе следствие из постулата относительности касается изменения представлений о пространстве и времени. Если в теории Ньютона время прохождения светового импульса, посланного из одной точки в другую и измеренное разными наблюдателями, будет одинаковым (ибо время абсолютно), а пройденный им путь может оказаться разным у разных наблюдателей (ибо пространство не абсолютно), а  разные наблюдатели получат разные скорости света (ибо скорость света есть пройденное светом расстояние, деленное на время), то в теории относительности у каждого наблюдателя должен быть свой масштаб времени, измеряемого с помощью имеющихся у него часов, причем показание одинаковых часов, имеющихся у разных наблюдателей, могут не согласоваться. Оказывается, что в рамках теории относительности нет надобности в понятиях абсолютного времени и эфира, но зато происходит смена представлений о пространстве и времени - теперь они не существуют как нечто не связанное друг с другом, а существует единое пространство-время. Событие, как нечто происходящее в определенный момент времени и в определенной точке пространства оказалось возможным характеризовать четырьмя координатами.

Специальная теория относительности объяснила постоянство скорости света для всех наблюдателей и позволила описать, что происходит при движении со скоростями, близкими к световым. Но она не согласовывалась с ньютоновской теорией гравитации, в соответствии с которой тела притягиваются друг к другу с силой, которая зависит от расстояния между ними. Это предполагает бесконечную скорость распространения гравитационных эффектов, а не равную или меньшую, как это требует теория относительности. Требовалось создать модель гравитации, согласовывающуюся со специальной теорией относительности. Эйнштейн в своей общей теории относительности высказал предположение о том, что гравитация является следствием искривления пространства-времени, вызванного распределенными в нем массой и энергией. Искривленность пространства-времени означает, что свет распространяется не прямолинейно, а искривляется в гравитационных полях. В нормальных условиях эффект искривления луча зафиксировать наблюдателю трудно, но это можно сделать во время солнечного затмения, когда Луна перекрывает солнечный свет. Это предсказание теории было подтверждено наблюдениями в западной Африке в 1919 г. английской экспедицией.

Другое предсказание общей теории относительности касалось того, что время вблизи массивных тел должно течь медленнее. Это предсказание было проверено в 1962 г. Оказалось, что часы, расположенные ближе к поверхности земли, действительно шли медленнее расположенных выше. Помимо общего интереса данный результат имеет большое значение для навигационных систем - игнорирование предсказаний общей теории относительности приводит к ошибкам при определении координат в несколько километров.

Таким образом, теория движения Ньютона отбросила представления об абсолютном пространстве, а теория относительности - об абсолютном времени. В общей теории относительности нет единого абсолютного времени. До создания общей теории относительности пространство и время выступали как место для событий, на которое все происходящее не влияет. В общей теории относительности пространство и время изменяются под влиянием происходящих процессов и сами влияют на них. Оказалось, что говорить о пространстве и времени вне пределов Вселенной бессмысленно. Старые представления о вечной и почти не изменяющейся Вселенной сменились представлениями об изменяющейся Вселенной, которая имела начало и возможно будет иметь конец.

Таким образом, к началу ХХ века обнаружилась необходимость в коренном пересмотре представлений о пространстве и времени. Эксперименты свидетельствовали, что принцип относительности Галилея (в соответствии с которым механические явления протекают одинаково во всех инерционных системах отсчета) может быть отнесен и к области электромагнитных явлений, а потому уравнения Максвелла не должны изменять свою форму при переходе от одной инерциальной системы отсчета к другой, т.е. должны быть инвариантными. Но это оказалось возможным лишь для случаев, когда преобразования координат и времени при таком переходе отличаются от преобразований Галилея, используемых в ньютоновской механике. Лоренц выразил эти преобразования, но не смог дать им верную интерпретацию - она оказалась возможной в рамках специальной теории относительности, выявившей ограниченность механической картины мира. Все попытки свести электромагнитные процессы к механическим процессам в эфире выявили свою несостоятельность, следствием чего и был вывод о том, что поведение формы материи в виде электромагнитного поля не укладываются в рамки законов механики.

 в) Общая теория относительности

Специальная теория относительности имеет дело с инерциальными системами координат, принцип относительности рассматривается применительно к прямолинейному и равномерному движению. Что же касается непрямолинейного или ускоренного движения, то принцип относительности в его прежней формулировке здесь оказывается несправедливым, ибо в движущейся ускоренной системе координат механические, оптические и электромагнитные явления протекают не так, как в инерциальных системах отсчета. Правильное описание этих физических явлений, учитывающее влияние на них ускорения, оказалось возможным на основе использования криволинейных координат в четырехмерном пространстве (четырехмерном пространственно-временном континууме Минковского). Эйнштейн предположил, что особенность сил тяготения заключается в том, что они всегда пропорциональны массе тела, на которое они действуют. Отсюда следовало, что все тела при одних и тех же начальных условиях движутся в поле тяготения независимо от массы или заряда, т.е. их траектория движения не зависит от свойств движущегося тела, а определяется свойствами поля тяготения. Это позволяет влияние поля тяготения, действующего в определенной части пространства, учитывать путем введения локальной кривизны четырехмерного пространства. В специальной теории относительности четырехмерный пространственно-временной континуум является эвклидовым (плоским). Можно предположить, что четырехмерное пространство может быть и неэвклидовым, т.е. обладать переменной кривизной. В этом случае определение тела в пространстве возможно лишь с помощью криволинейной системы координат. Таким образом, под действием сил тяготения тела изменяют свои размеры и время течет в зависимости от величины этих сил, т.е. поле тяготения меняет свойства пространства и времени. Электромагнитное поле существует в пространстве и времени, а гравитационное поле выражает геометрию пространства и времени. В соответствии с общей теорией относительности геометрия Евклида применима лишь к пустым пространствам, где нет тяжелых тел. Вблизи же тяжелых тел пространство изогнуто.

Общая теория относительности - общая физическая теория пространства, времени и тяготения - явилась новым этапом в развитии теории тяготения. Эйнштейн характеризовал отличие новой теории тяготения от старой следующим образом:

"1. Гравитационные уравнения общей теории относительности могут быть применены к любой системе координат. Выбрать какую-либо особую систему координат в специальном случае - дело лишь удобства. Теоретически допустимы все системы координат. Игнорируя тяготение, мы автоматически возвращаемся к инерциальной системе специальной теории относительности.

2. Ньютонов закон тяготения связывает движение тела здесь и теперь с действием другого тела в то же самое время на далеком расстоянии. Этот закон стал образцом для всего механического мировоззрения. Но механическое мировоззрение потерпело крах. В уравнениях Максвелла мы создали новый образец для законов природы. Уравнения Максвелла суть структурные законы. Они связывают события, которые происходят теперь и здесь, с событиями, которые происходят немного позднее и в непосредственном соседстве. Они суть законы, описывающие электромагнитное поле. Наши новые гравитационные уравнения суть также структурные законы, описывающие изменение поля тяготения. Схематически мы можем сказать: переход от ньютоновского закона тяготения к общей теории относительности до некоторой степени аналогичен переходу от теории электрических жидкостей и закона Кулона к теории Максвелла.

3. Наш мир неевклидов. Геометрическая природа его образована массами и их скоростями. Гравитационные уравнения общей теории относительности стремятся раскрыть геометрические свойства нашего мира."

Итак, механическая картина мира оказалась несостоятельной в силу того, что было невозможно объяснить все явления, исходя из предположения о действии между неизменными частицами простых сил. Попытки перехода от механических представлений к понятию поля были успешными в области электромагнитных явлений. Структурные законы, сформулированные для электромагнитного поля, связали события, смежные в пространстве и времени. Это были законы специальной теории относительности. Общая теория относительности сформулировала структурные законы, описывающие поле тяготения между материальными телами, она обратила внимание на ту роль, которую играет геометрия в описании физической реальности.

В настоящее время специальная теория относительности подтверждена экспериментально. Так. например, предсказанное этой теорией увеличение массы электронов при приближении их к скорости света подтвердилось неоднократно. Эквивалентность массы и энергии также доказана экспериментами в ядерной физике. Что же касается общей теории относительности, то столь же утвердительные экспериментальные доказательства ее истинности отсутствуют. Многие физики пока не считают достаточно утвердительными факты, приводимые в ее пользу : малое вековое смещение перигелия Меркурия, слабое отклонение проходящих вблизи Солнца световых лучей интерпретируются по-разному. Более убедительным представляется аргумент, связанный с измерением красного смещения спектральных линий, которые излучаются спутником Сириуса. Однако единственный аргумент не является доказательством достоверности. Данная теория не является законченной. Существуют различные точки зрения на понимание сущности общей теории относительности, отличные от эйнштейновской. Вместе с тем данная теория является одним из самых выдающихся теоретических построений, демонстрирующих внутреннюю логическую стойкость и вносящих в физику множество многообразных идей.

Завершая данный раздел, важно зафиксировать еще раз следующий факт. Существуют вещество и поле как различные физические реальности. Попытки физиков XIX века построить физику на основе только понятия вещества оказались несостоятельными. Построить физику на основе лишь понятия поля пока не удалось. Так что во всех теоретических построениях приходится признавать обе реальности. Но в связи с этим встает проблема взаимодействия элементарных частиц с полем. Попытки решения этой проблемы приводят к квантовой физике.

3. Квантовая теория

               а) Предпосылки квантовой теории

В конце XIX века выявилась несостоятельность попыток создать теорию излучения черного тела на основе законов классической физики. Из законов классической физики следовало, что вещество должно излучать электромагнитные волны при любой температуре, терять энергию и понижать температуру до абсолютного нуля. Иными словами. тепловое равновесие между веществом и излучением было невозможно. Но это находилось в противоречии с повседневным опытом.

Более детально это можно пояснить следующим образом. Существует понятие абсолютно черного тела - тела, поглощающего электромагнитное излучение любой длины волны. Спектр его излучения определяется его температурой. В природе абсолютно черных тел нет. Наиболее точно абсолютно черному телу соответствует замкнутое непрозрачное полое тело с отверстием. Любой кусок вещества при нагревании светится и при дальнейшем повышении температуры становится сначала красным, а затем - белым. Цвет от вещества почти не зависит, для абсолютно черного тела он определяется исключительно его температурой. Представим такую замкнутую полость, которая поддерживается при постоянной температуре и которая содержит материальные тела, способные испускать и поглощать излучения. Если температура этих тел в начальный момент отличалась от температуры полости, то со временем система (полость плюс тела) будет стремиться к термодинамическому равновесию, которое характеризуется равновесием между поглощаемой и измеряемой в единицу времени энергией. Г.Кирхгоф установил, что это состояние равновесия характеризуется определенным спектральным распределением плотности энергии излучения, заключенного в полости, а также то, что функция, определяющая спектральное распределение (функция Кирхгофа), зависит от температуры полости и не зависит ни от размеров полости или ее форм, ни от свойств помещенных в нее материальных тел. Так как функция Кирхгофа универсальна, т.е. одинакова для любого черного тела, то возникло предположение, что ее вид определяется какими-то положениями термодинамики и электродинамики. Однако попытки такого рода оказались несостоятельными. Из закона Д.Рэлея следовало, что спектральная плотность энергии излучения должна монотонно возрастать с увеличением частоты, но эксперимент свидетельствовал об ином: вначале спектральная плотность с увеличением частоты возрастала, а затем падала. Решение проблемы излучения черного тела требовало принципиально нового подхода. Он был найден М.Планком.

Планк в 1900 г. сформулировал постулат, согласно которому вещество может испускать энергию излучения только конечными порциями, пропорциональными частоте этого излучения (см. раздел "Возникновение атомной и ядерной физики"). Данная концепция привела к изменению традиционных положений, лежащих в основе классической физики. Существование дискретности действия указывало на взаимосвязь между локализацией объекта в пространстве и времени и его динамическим состоянием. Л. де Бройль подчеркивал, что "с точки зрения классической физики эта связь представляется совершенно необъяснимой и гораздо более непонятной по следствиям, к которым она приводит, чем связь между пространственными переменными и временем, установленная теорией относительности." Квантовой концепции в развитии физики было суждено сыграть огромную роль.

Следующим шагом в развитии квантовой концепции было расширение А.Эйнштейном гипотезы Планка, что позволило ему объяснить закономерности фотоэффекта, не укладывающиеся в рамки классической теории. Сущность фотоэффекта заключается в испускании веществом быстрых электронов под действием электромагнитного излучения. Энергия испускаемых электронов при этом от интенсивности поглощаемого излучения не зависит и определяется его частотой и свойствами данного вещества, но от интенсивности излучения зависит число испускаемых электронов. Дать объяснение механизму освобождаемых электронов не удавалось, поскольку в соответствии с волновой теорией световая волна, падая на электрон, непрерывно передает ему энергию, причем ее количество в единицу времени должно быть пропорционально интенсивности волны, падающей на него. Эйнштейн в 1905 году высказал предположение о том, что фотоэффект свидетельствует о дискретном строении света, т.е. о том, что излучаемая электромагнитная энергия распространяется и поглощается подобно частице (названной затем фотоном). Интенсивность падающего света при этом определяется числом световых квантов, падающих на один квадратный сантиметр освещаемой плоскости в секунду. Отсюда число фотонов, которые испускаются единицей поверхности в единицу времени. должно быть пропорционально интенсивности освещения. Многократные опыты подтвердили это объяснение Эйнштейна, причем не только со светом, но и с рентгеновскими и гамма-лучами. Эффект А.Комптона, обнаруженный в 1923 году, дал новые доказательства существования фотонов - было обнаружено упругое рассеяние электромагнитного излучения малых длин волн (рентгеновского и гамма-излучения) на свободных электронах, которое сопровождается увеличением длины волны. Согласно классической теории, при таком рассеянии длина волны не должна меняться. Эффект Комптона подтвердил правильность квантовых представлений об электромагнитном излучении как о потоке фотонов - он может рассматриваться как упругое столкновение фотона и электрона, при котором фотон передает электрону часть своей энергии, а потому его частота уменьшается, а длина волны увеличивается.

Появились и другие подтверждения фотонной концепции. Особенно плодотворной оказалась теория атома Н.Бора (1913 г.), выявившая связь строения материи с существованием квантов и установившая, что энергия внутриатомных движений может меняться также лишь скачкообразно. Таким образом, признание дискретной природы света состоялось. Но ведь по сути своей это было возрождение отвергнутой ранее корпускулярной концепции света. Поэтому вполне естественно возникли проблемы: как совместить дискретность структуры света с волновой теорией (тем более, что волновая теория света подтверждалась целым рядом экспериментов), как совместить существование кванта света с явлением интерференции, как явления интерференции объяснить с позиции квантовой концепции? Таким образом, возникла потребность в концепции, которая увязывала бы корпускулярный и волновой аспекты излучения.

б) Принцип соответствия

Для устранения трудности, возникшей при использовании классической физики для обоснования устойчивости атомов (вспомним, что потеря энергии электроном приводит к его падению на ядро), Бор предположил, что атом в стационарном состоянии не излучает (см. предыдущий раздел). Это означало, что электромагнитная теория излучения для описания электронов, движущихся по стабильным орбитам, не годится. Но квантовая концепция атома, отказавшись от электромагнитной концепции, не могла объяснить свойства излучения. Возникла задача: попытаться установить определенное соответствие между квантовыми явлениями и уравнениями электродинамики с целью понять, почему классическая электромагнитная теория дает верное описание явлений большого масштаба. В классической теории движущийся в атоме электрон излучает непрерывно и одновременно свет разных частот. В квантовой же теории электрон, находящийся внутри атома на стационарной орбите, наоборот, не излучает - излучение кванта происходит лишь в момент перехода с одной орбиты на другую, т.е. излучение спектральных линий определенного элемента является дискретным процессом. Таким образом, налицо два совершенно различных представления. Можно ли их привести в соответствие и если да, то в какой форме?

Очевидно, что соответствие с классической картиной возможно лишь при одновременном испускании всех спектральных линий. В то же время очевидно, что с квантовой позиции излучение каждого кванта является актом индивидуальным, а поэтому для получения одновременного испускания всех спектральных линий необходимо рассматривать целый большой ансамбль атомов одинаковой природы, в котором осуществляются различные индивидуальные переходы, приводящие к испусканию различных спектральных линий конкретного элемента. В этом случае понятие интенсивности различных линий спектра необходимо представлять статистически. Для определения интенсивности индивидуального излучения кванта необходимо рассматривать ансамбль большого числа одинаковых атомов. Электромагнитная теория позволяет дать описание макроскопических явлений, а квантовая теория тех явлений, в которых важную роль играют множество квантов. Поэтому вполне вероятно, что результаты, полученные квантовой теорией, будут стремиться к классическим в области множества квантов. Согласование классической и квантовой теорий и следует искать в этой области. Для вычисления классических и квантовых частот необходимо выяснить, совпадают ли эти частоты для стационарных состояний, которые отвечают большим квантовым числам. Бор выдвинул предположение о том, что для приближенного вычисления реальной интенсивности и поляризации можно использовать классические оценки интенсивностей и поляризаций, экстраполируя на область малых квантовых чисел то соответствие, которое было установлено для больших квантовых чисел. Данный принцип соответствия нашел подтверждение: физические результаты квантовой теории при больших квантовых числах должны совпадать с результатами классической механики, а релятивистская механика при малых скоростях переходит в классическую механику. Обобщенная формулировка принципа соответствия может быть выражена как утверждение, согласно которому новая теория, которая претендует на более широкую область применимости по сравнению со старой, должна включать в себя последнюю как частный случай. Использование принципа соответствия и придание ему более точной формы способствовали созданию квантовой и волновой механики.

К концу первой половины XX века в исследованиях природы света сложились две концепции - волновая и корпускулярная, которые остались не в состоянии преодолеть разделяющий их разрыв. Возникла настоятельная потребность создать новую концепцию, в которой квантовые идеи должны лечь в ее основу, а не выступать в роли некого "довеска". Реализация этой потребности была осуществлена созданием волновой механики и квантовой механики, которые по сути составили единую новую квантовую теорию - различие заключалось в используемых математических языках. Квантовая теория как нерелятивистская теория движения микрочастиц явилась самой глубокой и широкой физической концепцией, объясняющей свойства макроскопических тел. В качестве ее основы были положены идея квантования Планка-Эйнштейна-Бора и гипотеза о волнах материи де Бройля.

 в) Волновая механика

Ее основные идеи появились в 1923-1924 гг., когда Л. де Бройлем была высказана мысль о том, что электрон должен обладать и волновыми свойствами, навеянная аналогией со светом. К этому времени представления о дискретной природе излучения и существовании фотонов уже достаточно укрепились, поэтому для полного описания свойств излучения надо было поочередно представлять его то как частицу, то как волну. А поскольку Эйнштейн уже показал, что дуализм излучения связан с существованием квантов, то естественно было поставить вопрос о возможности обнаружения подобного дуализма и в поведении электрона (и вообще материальных частиц). Гипотеза де Бройля о волнах материи получила подтверждение обнаруженным в 1927 г. явлением дифракции электронов: оказалось, что пучок электронов дает дифракционную картину. (Позже будет обнаружена дифракция и у молекул.)

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12


Copyright © 2012 г.
При использовании материалов - ссылка на сайт обязательна.